Nitrous oxide content and fluxes in Setúbal Bay, Portugal, during upwelling events

Concentraciones y flujos de óxido de nitrógeno disuelto en la bahía de Setúbal, Portugal, durante los eventos de surgencia

C Gonçalves1*, MJ Brogueira1, MF Camões2

¹ Instituto Nacional dos Recursos Biológicos (INRB/IPIMAR), Av. Brasília, 1449-006 Lisboa, Portugal.

² Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, C8, 1749-016 Lisbon, Portugal.

* Corresponding author. E-mail: cpg@ipimar.pt

ABSTRACT. To evaluate the influence of upwelling events on nitrous oxide (N₂O) levels and sea-air exchange in Setúbal Bay (SW Portugal), measurements of dissolved N₂O were carried out from the surface down to 200 m depth in May 2006 and May 2007. During the weak upwelling event (May 2006), higher N₂O concentrations (values up to 14 nmol L⁻¹) were observed in the upper and deeper layers. In the upper layers a positive correlation between ΔN_2O (N₂O excess) and apparent oxygen utilization was calculated, suggesting that nitrification contributed to N₂O production. During the stronger upwelling event (May 2007), N₂O values were lower and did not surpass 12 nmol L⁻¹. Production of N₂O could not be disentangled and apparently upwelling provided an effective pathway for ventilating N₂O from subsurface waters to the atmosphere. Surface waters were, in general, supersaturated with respect to the atmosphere (percent saturation values 95–160%), indicating that the study area was acting as a source of atmospheric N₂O. Higher upwelling-favorable winds (values up to 9 m s⁻¹) registered in May 2007 contributed to increase N₂O emissions, which attained a maximum value of 15.2 µmol m⁻² d⁻¹ in this period. Lower N₂O sea-air fluxes were estimated in May 2006 and values did not surpass 8.8 µmol m⁻² d⁻¹. Taking into account the N₂O flux in our study area, the contribution of Portuguese coastal upwelling to N₂O emission was estimated, varying from 0.040 to 0.102 Gg N yr⁻¹. These values are lower than those reported for most upwelling systems and represent a minor source to atmospheric N₂O.

Key words: upwelling, nitrous oxide, sea-air fluxes, Setúbal Bay.

RESUMEN. Para evaluar la influencia de los eventos de surgencia en las concentraciones y flujos a la atmósfera del óxido de nitrógeno disuelto (N₂O) en la bahía de Setúbal (SO de Portugal), se midió el N₂O desde la superficie hasta una profundidad de 200 m en mayo de 2006 y mayo de 2007. Durante el afloramiento débil (mayo de 2006), las mayores concentraciones de N₂O (valores de hasta 14 nmol L⁻¹) fueron observadas en la capa superior y la capa más profunda de la columna de agua. En las capas superiores se detectó una correlación positiva entre el Δ N₂O (exceso de N₂O) y el consumo aparente de oxígeno, lo que sugiere que la nitrificación contribuyó a la producción de N₂O. Durante el evento de surgencia más fuerte (mayo de 2007), las concentraciones de N₂O disuelto fueron menores y no rebasaron los 12 nmol L⁻¹. No fue posible definir el proceso de producción de N₂O, y el afloramiento parece haber sido una forma eficiente de ventilación del N₂O a la atmósfera. En general, las aguas superficiales estuvieron sobresaturadas en N₂O con respecto a la atmósfera (saturación de 95 a 160%), lo que indica que el área de estudio estaba actuando como una fuente de N₂O atmosférico. Vientos más fuertes y favorables a las surgencias, registrados en mayo de 2007 (de hasta 9 m s⁻¹), contribuyeron al aumento de las emisiones de N₂O, que alcanzaron valores de hasta 15.2 µmol m⁻² d⁻¹ en dicho periodo. En mayo de 2006 se estimaron los flujos más bajos de N₂O a la atmósfera, que no superararon 8.8 µmol m⁻² d⁻¹. Teniendo en cuenta el flujo de N₂O del área de estudio, se estima que la surgencia costera portuguesa cotribuye con una emisión de N₂O entre 0.040 y 0.102 Gg N año⁻¹. Estos valores son inferiores a los de la mayoría de los sistemas de surgencia, por lo que representan una fuente menor de N₂O atmosférico.

Palabras clave: surgencia, óxido de nitrógeno disuelto, flujos, bahía de Setúbal.

INTRODUCTION

Nitrous oxide (N_2O) is responsible for 5–6% of the greenhouse effect (Houghton *et al.* 1996) and contributes to ozone depletion in the stratosphere. Its radiative forcing increased 11% from 1998 to 2005 and more than 18% since pre-industrial times in association with the development of

INTRODUCCIÓN

El óxido de nitrógeno (N₂O) es responsable del 5–6% del efecto invernadero (Houghton *et al.* 1996) y contribuye al agotamiento del ozono en la estratósfera. Su forzante radiativo se ha incrementado en 11% de 1998 a 2005 y en más de 18% con relación a los tiempos previos a la industrialización,

anthropogenic activities. Its Global Warming Potential is 310 times greater than carbon dioxide, in a time horizon of 100 years and, at present, the N₂O atmospheric mean mixing ratio corresponds to 319 ppbv (Forster et al. 2007). The world's oceans (including the coastal zones) account for about one-third of global N₂O emissions to the atmosphere (i.e., 6000 Gg yr⁻¹; IPCC 2007), although strong uncertainties still remain (Nevison et al. 2004). Nonetheless, marine emissions are not distributed uniformly, implying the need for improved understanding of the ocean's role in N₂O cycling. High biologically productive regions, such as estuaries and coastal zones, have been estimated to contribute 60% to the global oceanic N₂O flux (Bange et al. 1996, Seitzinger et al. 2000); however, this contribution may be overestimated as revised European estuarine N2O emission by Barnes and Upstill-Goddard (2011) indicates a value two orders of magnitude smaller than previously estimated (Bange 2006). Coastal upwelling brings N2O from deeper to surface layers and represents an additional, physically driven, source of N₂O to the atmosphere (Nevison et al. 2004). The relevance of seasonal upwelling ecosystems in the global N₂O balance has been demonstrated in different coastal regions, specifically in the Arabian Sea (De Wilde and Helder 1997, Naqvi et al. 2000) and eastern South Pacific (Nevison et al. 2004, Cornejo et al. 2006, Paulmier et al. 2008). In the Atlantic, coastal N₂O sources are dominated by Southwest African coastal upwelling in association with the Benguela Current and Mauritanian upwelling (in the Eastern Canary Coastal System) (Weiss et al. 1992, Rhee 2000, Forster *et al.* 2009). The contribution from coastal upwelling in major eastern boundary regions has been estimated as 0.2 ± 0.14 Tg N₂O-N yr⁻¹, which represents ~5% of the total ocean source (Nevison et al. 2004).

During spring and summer, the western Portuguese coast is influenced by prevailing equatorward winds, resulting in the upwelling of nutrient-enriched water (Fiúza 1983, Peliz and Fiúza 1999). Our study area, Setúbal Bay on the western Portuguese coast, is incised by Setúbal Canyon, which may act to enhance upwelling over the area, as observed in other systems (Waterhouse *et al.* 2009). The lack of studies on the contribution of Atlantic Portuguese coastal upwelling to N₂O emissions has been recognized (Bange 2006), and as far as we know our results are the first obtained for Portuguese coastal waters.

Here we report N_2O distribution and exchange across the sea-air interface in the Setúbal Canyon area under different upwelling intensities and attempt to identify some of the processes involved in N_2O production. We also present a first estimate of the contribution from Portuguese upwelling to the marine N_2O source as extrapolated from N_2O emissions calculated from our regional study. asociado con el desarrollo de las actividades antropogénicas. Su potencial de calentamiento global es 300 veces mayor que el del bióxido de carbono en un horizonte temporal de 100 años y, actualmente, la razón de mezcla del N2O atmosférico corresponde en promedio a 319 ppbv (Forster et al. 2007). Los océanos mundiales (incluyendo las zonas costeras) aportan alrededor de un tercio de las emisiones de N2O globales a la atmósfera (es decir, 6000 Gg año⁻¹; IPCC 2007), aunque todavía persiste gran incertidumbre al respecto (Nevison et al. 2004). No obstante, las emisiones marinas no están distribuídas uniformemente, lo que implica que se requiere profundizar en el conocimiento del papel del océano en el ciclo del N₂O. Se ha estimado que regiones biológicamente muy productivas tales como los estuarios y las zonas costeras contribuyen con el 60% del flujo oceánico global de N₂O (Bange et al. 1996, Seitzinger et al. 2000). Sin embargo, esta contribución podría estar sobreestimada como lo indica la revisión de las emisiones estuarinas europeas de N₂O de Barnes y Upstill-Godard, que tienen un valor dos órdenes de magnitud menor a lo previamente estimado (Bange 2006). Las surgencias costeras traen N₂O de las capas más profundas a las superficiales, lo que representa una fuente adicional forzada físicamente de N₂O a la atmósfera (Nevison et al. 2004). En diferentes regiones costeras se ha demostrado la importancia de los sistemas de surgencias estacionales en el balance global del N₂O, en especial en el mar Arábigo (De Wilde y Helder 1997, Nagvi et al. 2000) y en el Pacífico Sur oriental (Nevison et al. 2004, Cornejo et al. 2006, Paulmier et al. 2008). En el Atlántico, las fuentes costeras de N2O están dominadas por las surgencias costeras del suroeste africano asociadas a la corriente de Benguela y las surgencias mauritanas (en el Sistema Costero Oriental de Canarias) (Weiss et al. 1992, Rhee 2000, Forster et al. 2009). La contribución de las surgencias costeras en las principales regiones marginales orientales se ha estimado en 0.2 ± 0.14 Tg N₂O-N año⁻¹, lo que representa ~5% del total del aporte oceánico (Nevison et al. 2004).

Durante primavera y verano, la costa occidental portuguesa está influenciada por los vientos dominantes hacia el ecuador, lo que da como resultado la surgencia de aguas enriquecidas en nutrientes (Fiúza 1983, Peliz y Fiúza 1999). Nuestra zona de estudio, la bahía de Satúbal en la costa portuguesa occidental, está atravezada por el cañón de Setúbal, que podría incidir en la intensificación de las surgencias en la zona, como se ha observado en otros sistemas (Waterhouse *et al.* 2009). Se reconoce una falta de estudios acerca de la contribución de las surgencias de la costa atlántica portuguesa a las emisiones de N₂O (Bange 2006), y hasta donde se sabe los resultados de este trabajo son los primeros que se obtienen para aguas costeras portuguesas.

En este trabajo se reportan la distribución y el intercambio de N_2O a través de la interfase océano-atmósfera en el área del cañón de Setubal bajo diferentes intensidades de

MATERIAL AND METHODS

Study area and sampling

The study area, Setúbal Bay, a region located between Cape Espichel and Sines, is dominated by Setúbal Canyon, a complex geophysical and sedimentary feature extending from the shelf to the deep sea (fig. 1). The head of the canyon is located 20 km south-southwest of the Sado estuary mouth and 6 km west of the nearest coastline (Lastras *et al.* 2009). The upper region of the canyon acts as a natural trap for organic matter that is transported to the region via lateral transport and vertical settling from primary productivity, but organic matter of marine origin predominates in the Setúbal-Lisbon canyon system and on the adjacent slope (García *et al.* 2010).

Sampling took place on board the R/V *Noruega* in May 2006 and May 2007, from the mouth of the Sado estuary to Setúbal Canyon and Cape Espichel (fig. 1) during upwelling events of different intensities. During the week preceding the

surgencia y se intentan identificar algunos de los procesos involucrados en la producción del N_2O . También se presenta una primera estimación de la contribución de las surgencias portuguesas al aporte marino de N_2O como se ha extrapolado de las emisiones de N_2O calculadas de este estudio regional.

MATERIALES Y MÉTODOS

Zona de estudio y muestreo

La bahía de Setúbal está localizada entre cabo Espichel y Sines; está dominada por el cañón de Setúbal, un rasgo geofísico y sedimentario complejo que se extiende de la plataforma continental hasta las profundidades del océano (fig. 1). La cabeza del cañón se localiza 20 km al sur-suroeste de la boca del estuario del Sado y 6 km al oeste de la costa más cercana (Lastras *et al.* 2009). La parte superior del cañón actúa como una trampa natural para la materia orgánica que es transportada a la región por el transporte lateral y el asentamiento vertical de la productividad primaria, pero en el

Figure 1. Sampling locations in Setúbal Bay, western Portuguese margin, in May 2006 and May 2007. Figura 1. Sitios de muestreo en la bahía de Setúbal, en el margen occidentcal portugués, en mayo de 2006 y mayo de 2007.

May 2006 sampling, the upwelling index (UI) attained a maximum value of approximately $-500 \text{ m}^3 \text{ s}^{-1} \text{ km}^{-1}$, corresponding to weak upwelling (negative values indicate upwelling), while during the week preceding the May 2007 sampling, the UI reached values of $-1500 \text{ m}^3 \text{ s}^{-1} \text{ km}^{-1}$, indicating the development of stronger upwelling (fig. 2).

Values of the daily UI based on the northward wind stress component were calculated according to Bakun (1973). Wind data were obtained from a permanent meteorological station located at Cape Carvoeiro (39°18' N) (Instituto Nacional de Meteorologia 2006, 2007).

Temperature and salinity were measured *in situ* using a CTD (SBE19) profiler coupled to a Rosette sampler, equipped with Niskin bottles.

No dissolved oxygen deficiency develops in our study area despite evidence of an increased incidence of hypoxia in shelf systems, mainly in areas subjected to upwelling (Zhang *et al.* 2010).

Water samples for the determination of dissolved oxygen (hereinafter referred to as O_2), nitrate + nitrite (hereinafter referred to as NO_3^{-}), and N_2O were collected from the surface to 200 m depth.

Figure 2. Daily upwelling index (UI) (negative values indicate upwelling) in (a) May 2006 and (b) May 2007. Black arrows indicate the first day of sampling.

Figura 2. Índice diario de surgencias (UI) (valores negativos indican surgencias) en (**a**) mayo de 2006 y (**b**) mayo de 2007. Las flechas indican el primer día de muestreo.

sistema de cañones de Setúbal-Lisboa y su talud adyacente predomina la materia orgánica de origen marino (García *et al.* 2010).

El muestreo se realizó desde el B/O *Noruega* en los meses de mayo de 2006 y 2007, de la boca del estuario del Sado al cañón de Setúbal y cabo Espichel (fig. 1) durante eventos de surgencia de diversas intensidades. Durante la semana anterior al muestreo de mayo de 2006 el índice de surgencia (IS) alcanzó un valor máximo aproximado de $-500 \text{ m}^3 \text{ s}^{-1} \text{ km}^{-1}$, que corresponde a surgencias débiles (los valores negativos indican surgencias), mientras que durante la semana previa al muestreo de mayo de 2007, el IS alcanzó valores de $-1500 \text{ m}^3 \text{ s}^{-1} \text{ km}^{-1}$, que indicaban el desarrollo de surgencias más intensas (fig. 2).

Los valores diarios del IS basados en la componente al norte del esfuerzo del viento se calcularon de acuerdo con Bakun (1973). Los datos de viento se obtuvieron de una estación meteorológica permanente del Instituto Nacional de Meteorología (2006, 2007) localizada en cabo Carvoeiro (39°18' N).

La temperatura y salinidad se midieron *in situ* con un perfilador CTD SBE19 acoplado a una roseta de muestreo equipada con botellas Niskin.

A pesar de las evidencias de incremento en las incidencias de hipoxia en los sistemas de plataforma, sobre todo en áreas expuestas a surgencias (Zhang *et al.* 2010), en la zona de este estudio no se desarrolla anoxia alguna.

Para la determinación del oxígeno disuelto (de aquí en adelante O_2), nitrato + nitrito (de aquí en adelante NO_3^{-}), y N_2O , se recolectaron muestras de agua desde la superficie hasta 200 m de profundidad.

Para determinar el O₂ se utilizó el método de Winkler tal y como lo describen Aminot y Chaussepied (1983). La precisión lograda con el método, expresada como coeficiente de variación, fue entre 0.08% y 0.25%. El consumo aparente de oxígeno (CAO) se calculó de la siguiente manera: CAO (µmol L⁻¹) = O₂ (en equilibrio) – O₂ (observado). Los valores para el O₂ en equilibrio se calcularon con la ecuación dada por Weiss (1970).

Para la determinación del NO_3^- disuelto se pasaron las muestras de agua a través de filtros de acetato de celulosa (tamaño de poro = 0.45 µm) y se congelaron hasta su análisis. Los análisis de nutirentes se hicieron con un auto-analizador TRAACS siguiendo las técnicas colorimétricas indicadas por el fabricante. La precisión para el NO_3^- (10 réplicas) se estimó en ± 2.6% y la exactitud de las mediciones se mantuvo utilizando estándares CSK (Wako, Japón).

Para la determinación del N_2O se tomaron muestras sin burbujas (tres réplicas) inmediatamente después del muestreo de oxígeno, en viales de vidrio de 20 mL que fueron inoculados con 40 μ L de cloruro de mercurio (HgCl₂) acuoso saturado, sellados con tapas impermeables al gas y almacenados en la obscuridad a 4 °C hasta ser analizados en los 10 días siguientes a su recolección. La concentración del N_2O disuelto se determinó por cromatografía de gases usando una The Winkler method, as described by Aminot and Chaussepied (1983), was used to determine O_2 . The attained precision of the method, expressed as the coefficient of variation, was in the range of 0.08% to 0.25%. Apparent oxygen utilization (AOU) was calculated as follows: AOU (µmol L⁻¹) = O_2 (equilibrium) – O_2 (observed). The equilibrium values of O_2 were calculated with the equation given by Weiss (1970).

For determination of dissolved NO₃⁻, water samples were filtered through acetate cellulose filters (pore size 0.45 μ m) and frozen until analysis. Nutrient analyses were carried out using a TRAACS autoanalyzer following colorimetric techniques outlined by the manufacturer. Estimated precision (10 replicates) of NO₃⁻ was ±2.6% and the accuracy of measurements was maintained by using CSK standards (Wako, Japan).

For determination of N₂O, bubble-free samples were taken (three replicates) immediately following oxygen sampling in 20-mL glass vials, poisoned with 40 µL of saturated aqueous mercuric chloride (HgCl₂), sealed with gas-tight caps and stored in the dark at 4 °C until analysis within 10 days after collection. Dissolved N₂O concentration was determined by gas chromatography using a GC-ECD (GC Varian CP3800) headspace technique. In each vial, 5 mL of sample was removed and equilibrium was performed in a headspace CombiPAL autosampler. Gas chromatographic separation was carried out on a stainless steel column (80/100 mesh Porapack Q) and detection with a ⁶³Ni electron capture detector (ECD). To remove water vapor and CO₂, absorbent columns packed with $Mg(ClO_4)^2$ and Carbosorb, respectively, are located in the carrier gas line between the sample loop and the separation column. Calibration of ECD response was done by using standard N₂O gas mixtures in synthetic air (Air Liquide) and the precision of the method (n = 30) was 3%. The concentration of N₂O in the water samples was calculated from the concentration measured in the headspace according to the solubility equation of Weiss and Price (1980). The excess N_2O (ΔN_2O) is calculated as the difference between the calculated N₂O equilibrium concentration (C_a) and the measured concentration of N₂O (C_w) . To calculate C_a we used the atmospheric N₂O value of 319 ppbv (Forster et al. 2007).

During sampling, wind direction and speed were obtained at each sampling site using a portable meteorological station (Campbell Scientific CR 510) installed on board the R/V *Noruega*. Wind speeds (m s⁻¹) were taken over one-minute intervals, and converted to wind at 10 m height (U_{10}) by using a logarithmic correction (Pond 1975, Hartman and Hammond 1985).

The N₂O air-sea flux, F (µmol m⁻² d⁻¹), was estimated as $F_{N2O} = k \Delta N_2 O$, where k is the transfer velocity of N₂O, which is expressed as a function of the wind speed and the Schmidt number (Sc). To calculate k, we used both the trilinear k/wind speed relationship from Liss and Merlivat técnica del espacio vacio (headspace) GC-ECD (GC Varian CP3800). En cada vial se evacuaron 5 mL de la muestra y se dejó llegar al equilibrio en un autoanalizador de espacio vacío CombiPAL. La separación cromatográfica de gases se realizó en una columna de acero inoxidable (con malla Porapack Q 80/100) con un detector de captura de electrones (DCE) de ⁶³Ni. Para eliminar el vapor de agua y el CO₂ se colocaron columnas absorbentes llenas con $Mg(ClO_4)^2$ y Carbosorb, respectivamente, en la línea de gas entre el retorno de la muestra y la columna de separación. La respuesta del DCE se calibró usando mezclas estándares de gas N₂O en aire sintético (Air Liquide), y la precisión del método (n = 30) fue de 3%. La concentración del N₂O en las muestras de agua se calculó a partir de la concentración medida en el espacio vacío de acuerdo con la ecuación de solubilidad de Weiss y Price (1980). El exceso de N₂O $(\Delta N_2 O)$ se calculó como la diferencia entre la concentración de N₂O en equilibrio estimada (C_a) y la concentración de N₂O medida (C_w). Para calcular C_a se utilizó el valor de N₂O atmosférico de 319 ppbv (Forster et al. 2007).

Durante el muestreo se obtuvo la dirección y la velocidad del viento en cada sitio utilizando una estación meteorológica portátil (Campbell Scientific CR 510) a bordo del B/O *Noruega*. La velocidad del viento (m s⁻¹) se tomó cada minuto, y se convirtió en viento a 10 m de altura (U₁₀) usando una corrección logarítimica (Pond 1975, Hartman y Hammond 1985).

El flujo atmósfera-océano de N₂O, *F* (µmol m⁻² d⁻¹), se estimó como $F_{N2O} = k \Delta N_2 O$, donde k es la velocidad de transferencia del N₂O, que es expresada en función de la velocidad del viento y el número de Schmidt (Sc). Para calcular *k* se usó tanto la relación trilineal *k*/velocidad del viento de Liss y Merlivat (1986) (de aquí en adelante LM86) y la relación cuadrática *k*/velocidad del viento establecida por Wanninkhof (1992) (a partir de aquí W92). Los coeficientes *k* se ajustaron mediante (Sc/600)⁻ⁿ (*n* = 2/3 para velocidades de viento $\leq 3.6 \text{ m s}^{-1} \text{ y } n = 0.5 \text{ para velocidades de viento} > 3.6 \text{ m s}^{-1}$) para LM86 y (Sc/660)^{-0.5} para W92; Sc se calculó de acuerdo a la ecuación de Wanninkhof (1992).

RESULTADOS Y DISCUSIÓN

Distribución superficial de T, O₂, NO₃⁻ y N₂O

En la figura 3 se muestran las distribuciones de temperatura (T), O_2 , NO_3^- y N_2O . En mayo de 2006 el patrón de temperatura revela una franja bien defininda de agua más fría (16.0–16.6 °C) que se extiende de la cabeza del cañón de Setúbal hacia la boca del estuario del Sado y también alrededor de cabo Espichel, y que puede ser identificada como agua de surgencias. En mayo de 2007 se detectaron menores temperaturas (15.2–15.7 °C) en una zona más amplia, lo que refleja la mayor intensidad de la surgencia en ese periodo.

En ambos periodos de muestreo el agua estuvo bien oxigenada, con niveles de O_2 entre 225 y 290 μ mol L⁻¹. Los

(1986) (hereinafter referred to as LM86) and the quadratic *k*/wind speed relationship established by Wanninkhof (1992) (hereinafter referred to as W92). The coefficients *k* were adjusted by using $(Sc/600)^{-n}$ (n = 2/3 for wind speeds ≤ 3.6 m s⁻¹ and n = 0.5 for wind speeds > 3.6 m s⁻¹) for LM86 and $(Sc/660)^{-0.5}$ for W92; Sc was calculated according to the equation by Wanninkhof (1992).

RESULTS AND DISCUSSION

Surface distribution of T, O₂, NO₃⁻, and N₂O

Distributions of temperature (T), O_2 , NO_3^- , and N_2O at the surface are shown in figure 3. In May 2006, the temperature pattern reveals a well-defined band of colder water (16.0–16.6 °C), extending from the head of Setúbal Canyon towards the Sado estuary mouth and also around Cape Espichel, which can be identified as a signature of upwelled water. In May 2007, lower temperatures (15.2–15.7 °C) were detected over a wider area, reflecting the more intense upwelling that took place in this period.

Surface water was well oxygenated in both sampling periods, O_2 levels ranging from 225 to 290 µmol L⁻¹. In 2007, lower O_2 levels (<265 µmol L⁻¹) were associated with temperatures lower than 15.4 °C, representing an additional signal of upraised water.

The NO₃⁻ patterns revealed much higher concentrations in May 2007 (values up to 8.0 µmol L⁻¹) than in May 2006, which is in line with the occurrence of more intense upwelling. Regarding N₂O, the distributions of higher/lower concentrations match those of the colder/warmer water, indicating higher N₂O in the upwelled water; nevertheless, the N₂O concentrations were slightly higher in May 2006 (up to 13.4 nmol L^{-1}) than in May 2007 (up to 11.8 nmol L^{-1}). The N₂O saturation values ranged from 105% to 160% in 2006 and from 95% to 125% in 2007. The N₂O concentrations and saturations for various coastal systems and the open ocean are listed in table 1. Our values are, in general, higher than those found in the open Atlantic and Pacific Oceans (Oudot et al. 2002, Walter et al. 2006) and European coastal waters (Bange 2006), and compare with those found by Forster et al. (2009) in surface Atlantic waters of the Eastern (Canary) Coastal Province (CNRY) during upwelling. However, our values are much lower than those reported for other upwelling regions with oxygen minimum zones (OMZ) such as the Chilean coast (Cornejo et al. 2006, Paulmier et al. 2008) and Arabian Sea (De Wilde and Helder 1997, Naqvi et al. 2005).

Vertical distribution of T, O₂, NO₃, and N₂O

Figure 4 shows the onshore-offshore vertical distribution of T, O_2 , NO_3^- , and N_2O from the surface to 200 m depth for two selected transects (fig. 1). It can be noticed in both years that colder (13–14 °C), less oxygenated (230–240 µmol L⁻¹), menores niveles de O_2 encontrados en 2007 estuvieron asociados a temperaturas menores a 15.4 °C, lo que es un signo adicional de agua de surgencias.

Los patrones de NO₃⁻ revelaron concentraciones mucho mayores en mayo de 2007 (hasta 8.0 µmol L-1) que en mayo de 2006, lo que concuerda con la ocurrencia de mayores surgencias. Con respecto al N2O, las distribuciones de concentraciones mayores/menores coinciden con las de aguas más frías/más cálidas, indicando mayor concentración de N2O en el agua de surgencia; no obstante, las concentraciones de N2O fueron ligeramente superiores en mayo de 2006 (hasta 13.4 nmol L⁻¹) que en mayo de 2007 (hasta 11.8 nmol L⁻¹). Los valores de saturación del N2O variaron de 105% a 160% en 2006 y de 95% a 125% en 2007. En la tabla 1 se listan las concentraciones y saturaciones del N2O para varios sistemas costeros y mar abierto. En general, los valores aquí obtenidos son mayores que los encontrados en mar abierto en el Atlántico y el Pacífico (Oudot et al. 2002, Walter et al. 2006) y en aguas costeras europeas (Bange 2006), y se comparan con los encontrados por Forster et al. (2009) en aguas atlánticas superficiales de la Provincia Costera Oriental (Canaria, CNRY) durante las surgencias. Sin embargo, nuestros valores son mucho menores que los reportados para otras regiones de surgencia con zonas de mínimo de oxígeno (ZMO) como las costas chilenas (Cornejo et al. 2006, Paulmier et al. 2008) y el Mar Arábigo (De Wilde y Helder 1997, Navqi et al. 2005).

Distribución vertical de T, O₂, NO₃⁻ y N₂O

La figura 4 muestra la distribución vertical, de la costa a mar adentro, de T, O_2 , NO_3^- , y N_2O de la superficie a 200 m de profundidad en dos transectos seleccionados (fig. 1). Se puede notar que en ambos años aguas más fría (13–14 °C), menos oxigenadas (230–240 µmol L⁻¹) y enriquecidas en NO_3^- (8–12 µmol L⁻¹) surgieron de las profundidades (80/100 m en 2006 y 150/200 m en 2007) a la superficie. Este patrón fue más pronunciado en 2007, con una elevación mucho más abrupta de las isopletas y una columna de agua menos estratificada. De manera similar a lo que ocurre con las surgencias de la corriente de Canarias, en la zona del presente estudio no se desarrolló hipoxia alguna de gran escala, mientras que se sabe que en la mayoría de los sistemas de surgencias costeras existen ZMOs (Zhang *et al.* 2010).

En mayo de 2006 se midieron valores más altos de N₂O (12–13 nmol L⁻¹) en las estaciones 24 y 25 (hasta 180 m de profundidad), mientras que en mayo de 2007 la máxima concentración de N₂O no pasó de 10–11 nmol L⁻¹ a profundidades menores a 100 m. En general la columna de agua se encontró sobresaturada de N₂O, lo que indica que la zona se comporta como una fuente de N₂O a la atmósfera. No obstante, los valores de saturación en 2006 fueron mayores que en 2007. Evidentemente, surgencias más intensas incrementan la mezcla y el intercambio gaseoso, lo que conduce a una

Figure 3. Horizontal distributions of temperature (T), O_2 , NO_3^- , N_2O , and N_2O saturation at the surface in (**a**) May 2006 and (**b**) May 2007. **Figura 3.** Distribuciones horizontales de temperatura (T), O_2 , NO_3^- , N_2O y saturación de N_2O en superfície en (**a**) mayo de 2006 y (**b**) mayo de 2007.

	N_2O	N_2O sat	Atmospheric flux	Reference
	(nmol L ⁻¹)	(%)	$(\mu mol m^{-2} d^{-1})$	
Tropical Atlantic (surface mixed layer)	6.9–7.4	123–132	-	Oudot et al. (1990)
North Atlantic (subsurface layer)	8.0-11.0	_	-	Walter et al. (2006)
European shelf waters (North Sea)	-	99–130	_	Bange (2006)
Central Chile (upwelling)	100-557	_	3–331	Cornejo et al. (2006)
Chilean eastern South Pacific (upwelling)	51.4-1160.8	_	4–331	Paulmier et al. (2008)
Arabian Sea, Somali Basin (upwelling)	76-81	840-1030	260-500	De Wilde and Helder (1997)
Arabian Sea, Indian continental shelf (upwelling)	-	84-8250	53-351	Naqvi et al. (2005)
Eastern Canary Coastal Province (CNRY) (upwelling)	8.5±1.1	140±10	2.73-4.65	Forster et al. (2009)
Benguela upwelling	_	120-130	-	Weiss et al. (1992)
Setúbal Canyon area (upwelling)	11.8–13.4	95-160	1.60–15.0	This study

Table 1. Nitrous oxide concentration and fluxes to the atmosphere from several marine systems.

 Tabla 1. Concentración y flujos de óxido nitroso a la atmósfera desde varios sistemas marinos.

and NO₃⁻ enriched (8–12 μ mol L⁻¹) waters upwelled from deeper (80/100 m in 2006 and 150/200 m in 2007) to surface water. The pattern was more pronounced in 2007, with a much steeper rise of isopleths and a less stratified water column. Similarly to the situation in the upwelling Canary Current System, no large scale hypoxia develops in our study area, whereas this phenomenon (OMZ) is known to occur in most coastal upwelling systems (Zhang *et al.* 2010).

In May 2006, higher N₂O values (12–13 nmol L⁻¹) were measured at stations 24 and 25 (down to 180 m), while in May 2007 the maximum concentration of N₂O did not surpass 10–11 nmol L⁻¹ at depths above 100 m. The water column was, in general, N₂O supersaturated indicating that the area behaves as a N₂O source to the atmosphere. Nevertheless, saturation values in 2006 were higher than in 2007. Evidently, stronger upwelling increased mixing and gas exchange leading to strong dilution of the upwelled N₂O signal at a rate that far exceeds its replenishment from deeper waters, as observed in other systems (Cline *et al.* 1987).

Relationship between $\Delta N_2 O$ and apparent oxygen utilization

The relationship between N₂O production and AOU can be used to identify the microbial source of N₂O in the water column. Following the approach of Yoshinari (1976), who first showed that oceanic N₂O excess (Δ N₂O) was as a general rule proportional to AOU and suggested that nitrification was the main source of N₂O, this technique has been routinely applied in different oceanic areas (De Wilde and Helder 1997, Oudot *et al.* 2002, Forster *et al.* 2009). Figure 5 displays the relationship between Δ N₂O and AOU in our study area for all sampling depths in 2006 and 2007. In 2006 (fig. 5a), under weaker upwelling, points from the surface down to 20 m (mixed layer) were significantly correlated (table 2), the correlation accounting for 40% of the fuerte dilución de la señal de N_2O a tasas que exceden por mucho su reposición por al abasto desde aguas más profundas, tal y como se ha observado en otros sistemas (Cline *et al.* 1987).

Relación entre $\Delta N_2 O$ y consumo aparente de oxígeno

Es posible utilizar la relación entre el N₂O y el CAO para identificar la fuente microbiana de N2O en la columna de agua. De acuerdo con Yoshinari (1976), quien fue el primero en mostrar que el excedente de N₂O en el océano (Δ N₂O) en general es proporcional al CAO y en sugerir que la nitrificación puede ser una fuente principal de $\Delta N_2 O_2$, esta técnica ha sido aplicada de manera rutinaria en diferentes partes del océano (De Wilde y Helder 1997, Oudot et al. 2003, Forster et al. 2009). La figura 5 muestra la relación entre $\Delta N_2 O$ y CAO en todas las profundidades de nuestra zona de estudio en 2006 y 2007. En 2006 (fig. 5a), con surgencias más débiles, los puntos desde la superficie hasta 20 m de profundidad (capa de mezcla) estuvieron correlacionados significativamente (tabla 2), y su correlación significó 40% de la variación, lo que indica que la nitrificación contribuyó al incremento de las concentraciones de N2O en las capas superiores de la columna de agua. La proporción $\Delta N_2O/CAO$ (0.076 nmol µmol⁻¹) fue mayor que la encontrada en el Atlántico Norte y Subtropical (capa de mezcla y capas subsuperficiales) y en el océano del Sur (capa productiva) (tabla 2). No obstante, el valor es menor al observado en muchas zonas de surgencias como la costa central de Chile (0.225 nmol µmol⁻¹) y el mar Arábigo (0.172 nmol µmol⁻¹), probablemente como resultado de menor actividad biológica y remineralización de materia orgánica en nuestra zona de surgencias. En aguas superficiales la razón ΔN2O/CAO es modificada por la producción fotosintética de oxígeno y el intercambio gaseoso con la atmósfera, y por lo tanto su valor

Figure 4. Vertical profiles of temperature (T), O_2 , NO_3^- , N_2O , and N_2O saturation from the surface down to 200 m depth in (a) May 2006 and (b) May 2007.

Figura 4. Perfiles verticales de temperatura (T), O_2 , NO_3^- , N_2O , y saturación de N_2O de la superficie hasta 200 m de profundidad en (**a**) mayo de 2006 y (**b**) mayo de 2007.

Figure 5. Relationship between ΔN_2O (N_2O excess) and apparent oxygen utilization (AOU) in (a) May 2006 and (b) May 2007. (\blacktriangle) Data from the surface down to 20 m depth; (\triangle) data below 20 m depth. **Figura 5.** Relación entre ΔN_2O (exceso de N_2O) y el consumo aparente de oxígeno (AOU) en (a) mayo de 2006 y (b) mayo de 2007. (\bigstar) Datos de la superficie a 20 m de profundidad; (\triangle) datos por debajo de la profundidad de 20 m.

Table 2	. Regression analysis	between $\Delta N_2 O$	and apparent	t oxygen i	utilization i	n several	marine sy	stems.
Tabla 2	2. Análisis de regresiór	entre $\Delta N_2 O y$	el consumo a	aparente c	le oxígeno	en varios	sistemas	marinos.

	Slope	R^2	п	Reference
	(nmol µmol ⁻¹)			
Tropical Eastern Atlantic (surface mixed layer)	0.106	0.85	29	Foster <i>et al.</i> (2009)
Subtropical North Atlantic (subsurface layer)	0.047	0.86	-	Walter et al. (2006)
North Atlantic (surface mixed layer)	0.045	-	-	Freing et al. (2009)
Southern Ocean (productive layer)	0.068	0.98	-	Boontanon et al. (2010)
Central Chile (below mixed layer, upwelling)	0.225	_	-	Cornejo et al. (2006)
Arabian Sea, Somali Basin (upwelling)	0.172	0.87	51	De Wilde and Helder (1997)
Setúbal Canyon area (surface layer, upwelling)	0.076	0.40	23	This study

variation. This indicates that nitrification contributed to the increase of N₂O concentrations in the upper layers of the water column. The $\Delta N_2 O/AOU$ ratio (0.076 nmol μ mol⁻¹) was higher than that found in the North and Subtropical Atlantic (mixed layer and subsurface layers) and in the Southern Ocean (productive layer) (table 2). Nevertheless, the value is lower than that observed in many upwelling areas such as central Chile (0.225 nmol µmol⁻¹) and the Arabian Sea (0.172 nmol µmol-1) probably as a result of lower biological activity and remineralization of organic matter in our coastal upwelling zone. In surface waters the $\Delta N_2 O/AOU$ ratio is modified by photosynthetic oxygen production and gas exchange with the atmosphere and, therefore, its value may be compromised (De Wilde and Helder 1997). Nonetheless, more recently Yool et al. (2007) showed that nitrification near the surface generates a substantial fraction puede verse alterado (De Wilde y Helder 1997). Sin embargo, más recientemente Yool et al. (2007) mostraron que la nitrificación cerca de la superficie genera una fracción sustancial de nitrato que es comsumido por el fitoplancton oceánico, lo que apoya nuestros resultados. En contraste, los datos obtenidos por debajo de los 20 m de profundidad no revelaron una relación significativa (fig. 5a), lo que sugiere una reducción en la nitrificación en estas capas. En 2007, en condiciones de surgencias intensas, los datos fueron tomados tanto en la superficie como hasta los 200 m y ΔN_2O no rebasó 2.2 nmol L⁻¹ (fig. 5b), lo que tampoco aporta evidencias de nitrificación. Las variables ambientales que afectan las tasas de nitrificación revisadas por Ward (2000) incluyen la temperatura, la luz y la concentración del sustrato como factores potencialmente importantes. Con relación a la temperatura, en nuestra zona de estudio en 2006 y 2007 se observaron of nitrate taken up by phytoplankton in the ocean, which gives support to our findings. In contrast, data points below 20 m depth did not reveal a significant relationship (fig. 5a), suggesting reduced nitrifying activity in these layers. In 2007, under stronger upwelling, data points were scattered either at the surface or down to 200 m and ΔN_2O did not surpass 2.2 nmol L^{-1} (fig. 5b), which also does not provide evidence of nitrifying activity. The environmental variables that affect nitrification rates reviewed by Ward (2000) include temperature, light, and substrate concentration as potentially important factors. Concerning temperature, similar values were observed in 2006 and 2007 in our study area and were not likely to inhibit nitrification in 2007. With respect to the substrate, ammonium concentrations did not vary significantly from 2006 to 2007 (values not shown) and did not decrease below 0.15 µM, the half saturation constant of nitrification bacteria in the environment (Hashimito et al. 1983). These factors were probably of minor importance in depressing nitrification in 2007. Otherwise, according to Pushon and Moore (2004a), ammonium oxidation appeared to be inhibited by mixing, and nitrification was suppressed during periods of intense deep-water mixing. The same authors (Pushon and Moore 2004b) stated that in the shallowwater column it can be complicated resolving the relative contributions of different processes to the net observed N2O levels due to dispersal of water column N2O across the seaair interface. Similarly, in our study area the water column mixing conditions observed during the strong 2007 upwelling event may have led to lower N2O levels, being impossible to disentagle nitrifying activity from our data.

N₂O flux across the air-sea interface

The empirical relationships of Liss and Merlivat (LM86) and Wanninkhof (W92), used to calculate N₂O air-sea fluxes, are considered to provide the lower and upper boundaries of flux estimates. Figure 6 shows the N₂O fluxes and averaged wind speeds from stations of selected transects (fig. 1). It can be observed that in May 2007, N₂O emissions were higher than in May 2006 and varied greatly between stations. In this last year values did not surpass 1.8 μ mol m⁻² d⁻¹ in the selected transects, while in May 2007 maximum emission reached a value of 15 µmol m⁻² d⁻¹. The higher wind speeds observed in 2007 (fig. 6) led to the enhancement of gas transfer velocity over the air-sea boundary. According to the criterion proposed by Paulmier et al. (2008), based on the comparison with the fluxes reported out of OMZ regions, this last exchange value can be considered high (>8.1 µmol m⁻² d⁻¹). It is also higher than the values reported for CNRY (Forster *et al.* 2009), but much lower than those reported for other more intense upwelling areas (table 1).

Figure 7 shows the variability of N_2O fluxes (W92) at all individual stations over the study area in both years. Highest emissions (4–6 µmol m⁻² d⁻¹ in 2006 and 4–15 µmol m⁻² d⁻¹

valores similares que parecieron no inhibir la nitrificación en 2007. Con respecto al sustrato, las concentraciones de amonio no variaron significativamente de 2006 a 2007 (valores no mostrados) y no disminuyeron por debajo de 0.15 µM, que es la mitad de la constante de saturación de las bacterias nitrificantes en el ambiente (Hashimito et al. 1983). Probablemente estos factores fueron de menor importancia en la disminución de la nitrificación en 2007. O bien, de acuerdo con Pushon y Moore (2004a), la oxidación del amonio pareció ser inhibida por la mezcla, y la nitrificación suprimida durante periodos de intensa mezcla a profundidad. Estos mismos autores (Pushon y Moore 2004b) mencionan que en columnas de agua somera puede ser complicado determinar las contribuciones relativas de los diferentes procesos a los niveles netos de N₂O observados debido a la dispersion del N₂O de la propia columna a través de la interfase océano atmósfera. De manera similar, en nuestra zona de estudio las condiciones de mezcla de la columna de agua observadas durante el evento de surgencias intenso pueden haber llevado a menores niveles de N₂O, aunque resulta imposible discriminar la actividad nitrificadora de nuestros datos.

Flujo de N₂O a través de la interfase océano-atmósfera

Se considera que las relaciones empíricas de Liss y Merlivat (LM86) y Wanninkhof (W92) usadas para calcular los flujos océano-atmósfera de N2O proporcionan los límites inferior y superior de los flujos estimados. La figura 6 muestra los flujos de N₂O y las velocidades medias del viento de las estaciones en los transectos seleccionados (fig. 1). Se puede observar que en mayo de 2007 las emisiones de N₂O fueron mayores que en 2006 y variaron mucho entre estaciones. En 2006 los valores no rebasaron 1.8 µmol m⁻² d⁻¹ en los transectos seleccionados, mientras que en mayo de 2007 la emisión máxima alcanzó un valor de 15 µmol m⁻² d⁻¹. Las mayores velocidades de viento observadas en 2007 (fig. 6) condujeron a un incremento en las velocidades de intercambio gaseoso en la interfase océano-atmósfera. De acuerdo con el criterio propuesto por Paulmier et al. (2008), basado en la comparación con los flujos reportados fuera de las regiones con ZMO, este último valor de intercambio puede considerarse alto (>8.1 µmol m⁻² d⁻¹). También es mayor a los valores reportados para la Provincia Costera Oriental de Canarias (Forster et al. 2009), pero mucho menor que los reportados para otras zonas con surgencias más intensas (tabla 1).

La figura 7 muestra la variabilidad de los flujos de N₂O (W92) en todas las estaciones a lo largo de la zona de estudio en ambos años. Las mayores emisiones (4–6 μ mol m⁻² d⁻¹ en 2006 y 4–15 μ mol m⁻² d⁻¹ en 2007) coinciden aproximadamente con las mayores saturaciones de N₂O de cada año.

Considerando 144 días (de abril a septiembre) como la media anual de días con condiciones favorables a las surgencias a lo largo de la costa occidental de la Península Ibérica

Figure 6. Air-sea N_2O fluxes (±1 SD) (solid line: W92; dotted line: LM86) and wind speed at 10 m height (U_{10} , bars) in (**a**) May 2006 and (**b**) May 2007. Note the different scales used.

Figura 6. Flujos de N₂O océano-atmósfera (± 1 DE) (línea sólida: W92; línea punteada: LM86) y velocidad del viento a 10 m de altura (U₁₀, barras) en (**a**) mayo de 2006 y (**b**) mayo de 2007. Nótense las diferentes escalas utilizadas.

Figure 7. Horizontal distributions of air-sea N₂O fluxes (W92) in (a) May 2006 and (b) May 2007.
Figura 7. Distribuciones horizontales de los flujos de N₂O océano-atmósfera (W92) en (a) mayo de 2006 y (b) mayo de 2007.

in 2007) match approximately the highest N_2O saturations in each year.

Considering 144 days (from April to September) as the mean of days per year under upwelling-favorable conditions along the west coast of the Iberian Peninsula (Alvarez *et al.* 2011) and an area of upwelling incidence of 22,050 km², which corresponds to an approximate $0.5^{\circ} \times 0.5^{\circ}$ grid extending along the Portuguese shoreline of colder water (sea surface temperature < 16.5 °C), and assuming a mean N₂O flux ranging from $0.82 \pm 1.30 \mu$ mol m⁻² d⁻¹ (LM86) to $2.30 \pm 3.08 \mu$ mol m⁻² d⁻¹ (W92) from the study area, we extrapolate an emission between 0.04 and 0.102 Gg N yr⁻¹ for the Portuguese upwelling area. This is one order of magnitude lower than that estimated for the upwelling area off Mauritania (16°–21° N, 1.0 Gg N yr⁻¹) (Wittke *et al.* 2010) and much lower than the values reported from other major upwelling regions such as the Arabian Sea (46 Gg N yr⁻¹) and

(Alvarez et al. 2012) y un área de incidencia de las surgencias de 22,050 km², que corresponde a una malla de $0.5^{\circ} \times 0.5^{\circ}$ que se extiende a lo largo de las costas portuguesas con aguas más frías (temperatura superficial del mar < 16.5 °C), y suponiendo un flujo medio de N₂O de $0.82 \pm 1.30 \ \mu mol \ m^{-2} \ d^{-1}$ (LM86) a $2.30 \pm 3.08 \text{ }\mu\text{mol }\text{m}^{-2} \text{ }\text{d}^{-1}$ (W92) en el área de estudio, se estimó una emisión entre 0.04 y 0.102 Gg N año-1 para la zona portuguesa de surgencias. Esto es un orden de magnitud menor que lo estimado para la zona de surgencias frente a Mauritania (16°-21° N, 1.0 Gg N año-1) (Wittke et al. 2010) y mucho menor que los valores reportados para otras regiones de importantes surgencias como el mar Arábigo (46 Gg N año⁻¹) y el Pacífico (119.1 Gg N₂O-N año⁻¹) (Nevison et al. 2004), lo que indica que las emisiones de N₂O de la costa protuguesa durante las surgencias representan una fuente poco importante de N₂O a la atmósfera (0.02–0.05%) comparadas con otras regiones de surgencias costeras.

Pacific (119.1 Gg N₂O-N yr⁻¹) (Nevison *et al.* 2004). This indicates that N₂O emissions from the Portuguese coast during upwelling represent a minor source of atmospheric N₂O (0.02-0.05%) when compared with other coastal upwelling regions.

CONCLUSIONS

Our study reveals that under different upwelling intensities, N₂O levels and fluxes exhibit a considerable variability in Setúbal Bay. Lower N₂O concentrations were measured during stronger upwelling, suggesting that N₂O distribution is controlled by a more rapid gas emission to the atmosphere compared with N₂O replenishment from deeper waters. Under weaker upwelling the higher N₂O levels detected may be accounted for by nitrification occurring mainly in the mixed layer, besides the transport from deeper layers. Seawater was, in general, supersaturated with N₂O, indicating that the area represents an atmospheric source during upwelling, and maximum N₂O emission (15 µmol m⁻² d⁻¹) was registered under stronger upwelling.

The total emission from the Portuguese coastal upwelling, extrapolated from data obtained in our study area, indicates a minor contribution to the atmospheric N_2O budget.

ACKNOWLEDGEMENTS

This work was partially funded by the European Union, under project P.O.MARE "Caracterização Ecológica da Zona Costeira" (contract No. 22-05-01-FDR-00015). The first author acknowledges funding from the Protuguese Foundation for Science and Technology (Fundação para a Ciência e Tecnologia, Ministério da Ciência, Tecnologia e Ensino Superior; contract SFRH/BD/28569/06). The authors thank the crew of R/V *Noruega* for work at sea, C Araújo for laboratory assistance, and two anonymous reviewers for helpful suggestions that greatly contributed to improve this paper.

REFERENCES

- Alvarez I, Gomes-Gesteira M, de Castro M, Lorenzo MN, Crespo AJC, Dias JM. 2011. Comparative analysis of upwelling influence between the western and northern coast of the Iberian Peninsula. Cont. Shelf Res. 31: 388–399, doi: 10.1016/ j.ecss.2009.02.023.
- Aminot A, Chaussepied M. 1983. Manuel des Analyses Chimiques en Milieu Marin. Centre National pour l'Exploitation des Océans (CNEXO), Brest, France, 395 pp.
- Bakun A. 1973. Coastal upwelling indices, west coast of North America, 1946-71. US Dept. of Commerce, NOAA Tech. Rep., NMFS SSRF-671, 103 pp.
- Bange HW. 2006. New directions: The importance of the oceanic nitrous oxide emissions. Atmos. Environ. 40: 198–199, doi:10.1016/j.atmosenv.2005.09.030.
- Bange HW, Rapsomanikis S, Andreae MO. 1996. Nitrous oxide in coastal waters. Global Biogeochem. Cycles 10: 197–207.
- Barnes J, Upstill-Goddard RC. 2011. N₂O seasonal distributions and air-sea exchange in UK estuaries: Implications for the

CONCLUSIONES

El presente estudio revela que bajo diferentes intensidades de surgencia, los niveles y flujos de N₂O muestran una considerable varibilidad en la bahía de Setúbal. Las menores concentraciones de N₂O que se midieron durante las surgencias más intensas sugieren que la distribución de N₂O está controlada por una más rápida emisión de gas a la atmósfera comparada con el reabastecimiento de N₂O desde aguas profundas. Con surgencias más débiles, los mayores niveles de N₂O detectados pueden atribuirse a la nitrificación que ocurre principalmente en la capa de mezcla, además del transporte desde capas más profundas. En general el agua de mar se encontró sobresaturada en N₂O, lo que indica que la zona representa una fuente atmosférica durante las surgencias, y la máxima emisión de N₂O (15 µmol m⁻² d⁻¹) se registró durante surgencias más intensas.

La emisión total de las surgencias costeras portuguesas extrapoladas de los datos obtenidos en estes estudio indican una contribución menor al balance atmosférico de N₂O.

AGRADECIMIENTOS

Este trabajo fue financiado parcialmente por la Unión Europea como parte del proyecto P.O.MARE "Caracterização Ecológica da Zona Costeira" (contrato No. 22-05-01-FDR-00015). El primer autor agradece el financiamiento de la Fundación Portuguesa para la Ciencia y la Tecnología (Fundação para a Ciência e Tecnologia, Ministério da Ciência, Tecnologia e Ensino Superior, contrato SFRH/BD/ 28569/06). Los autores agradecen a la tripulación del B/O *Noruega* por su trabajo en altamar, y a C Araújo por su ayuda en el laboratorio. También se agradece a dos revisores anónimos por sus sugerencias que contribuyeron en gran medida a mejorar este artículo.

Traducido al español por Manuel Gardea-Ojeda.

tropospheric N_2O source from European coastal waters. J. Geophys. Res. 116, G01006, doi:10.1029/2009JG001156.

- Boontanon N, Watanabe S, Odate T, Yoshida N. 2010. Production and consumption mechanisms of N₂O in the Southern Ocean revealed from its isotopomer ratios. Biogeosciences Discuss. 7: 7821–7848, doi:10.5194/bgd-7-7821-2010.
- Cline JD, Wisegarver DP, Kelly-Hansen K. 1987. Nitrous oxide and vertical mixing in the equatorial Pacific during the 1982–1983 El Niño. Deep-Sea Res. 34: 857–873.
- Cornejo M, Farías L, Paulmier A. 2006. Temporal variability in N₂O water content and its air-sea exchange in an upwelling area off central Chile (36°S). Mar. Chem. 101: 85–94.
- De Wilde HPJ, Helder W. 1997. Nitrous oxide in the Somali Basin: The role of upwelling. Deep-Sea Res. 44: 1319–1340.
- Fiúza AFG. 1983. Upwelling patterns off Portugal. In: Suess E, Thiede J (eds.), Coastal Upwelling: Its Sediment Record. Part A. Nato Conference Series IV, Marine Sciences. Plenum Press, New York, pp. 85–98.
- Forster G, Upstill-Goddard RC, Gist N, Robinson C, Uher G, Woodward EMS. 2009. Nitrous oxide and methane in the

Atlantic Ocean between 50°N and 52°S: Latitudinal distribution and sea-to-air flux. Deep-Sea Res. II. 56: 964-976, doi: 10.1016/j.dsr2.2008.12.002.

- Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R. 2007. Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 747–845.
- Freing A, Wallace DWR, Tanhua T, Walter S. Bange HW. 2009. North Atlantic production of nitrous oxide in the context of changing atmospheric levels. Global Biogeochem. Cycles 23, GB4015, doi:10.1029/2009GB003472.
- García R, Thomsen L, de Stigter HC, Epping E, Soetaert K, Koning E, de Jesus Mendes PA. 2010. Sediment bioavailable organic matter, deposition rates and mixing intensity in the Setúbal-Lisbon canyon and adjacent slope (Western Iberian Margin). Deep-Sea Res. I 57: 1012–1026, doi:10.1016/j.dsr.2010.03.013.
- Hartman B, Hammond D. 1985. Gas exchange in San Francisco Bay. Hydrobiologia 129: 59–68.
- Hashimito LK, Kaplan WA, Wofsy SC. 1983. Transformations of fixed nitrogen and N_2O in the Cariaco Trench. Deep-Sea Res. I 30: 575–590.
- Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds.). 1996. Climate Change 1995. The Science of Climate Change. Contribution of Working Group 1 to the Second Assessment Report of the Intergovernamental Panel on Climate Change. Cambridge University Press, Cambridge, 572 pp.
- Instituto Nacional de Meteorologia e Geofísica. 2006. Boletim Meteorológico Diário, Portugal.
- Instituto Nacional de Meteorologia e Geofísica. 2007. Boletim Meteorológico Diário, Portugal.
- IPCC. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds.). Cambridge University Press, Cambridge, 996 pp.
- Lastras G, Arzola RG, Masson DG, Wynn RB, Huvenne VAI, Hühnerbach V, Canals M. 2009. Geomorphology and sedimentary features in the central Portuguese submarine canyons, Western Iberian Margin. Geomorphology 103: 310–329, doi:10.1016/j.geomorph.2008.06.013.
- Liss PS, Merlivat L. 1986. Air-sea gas exchange rates: Introduction and synthesis. In: Buat-Menard P (ed.), The Role of Air-Sea Exchange in Geochemical Cycling. D. Reidel, Dordrecht, pp. 113–127.
- Naqvi SWA, Jayakumar DA, Narvekar PV, Naik H, Sarma VVSS, D'Souza W, Joseph S, George MD. 2000. Increased marine production of N₂O due to intensifying anoxia on the Indian continental shelf. Nature 408: 346–349.
- Naqvi SWA, Bange HW, Gibb SW, Goyet C, Hatton AD, Upstill-Goddard R. 2005. Biogeochemical ocean-atmosphere transfers in the Arabian Sea. Prog. Oceanogr. 65: 116–144, doi: 10.1016/ j.pocean.2005.03.005.
- Nevison CD, Lueker TJ, Weiss RF. 2004. Quantifying the nitrous oxide source from coastal upwelling. Global Biogeochem. Cycles 18, GB1018, doi: 10.1029/2003GB002110.
- Oudot C, Andrie C, Montel Y. 1990. Nitrous oxide production in the Tropical Atlantic Ocean. Deep-Sea Res. 37: 183–202.

- Oudot C, Philippe JB, Fourré, Mormiche C, Guevel M, Ternon JF, Le Corre C. 2002. Transatlantic equatorial distribution of nitrous oxide and methane. Deep-Sea. Res. I 49: 1175–1193.
- Paulmier A, Ruiz-Pino D, Garcon V. 2008. The oxygen minimum zone (OMZ) off Chile as intense source of CO₂ and N₂O. Cont. Shelf Res. 28: 2746–2756, doi:10.1061/j.csr.2008.09.012.
- Peliz A, Fiúza AFG. 1999. Spatial and temporal variability of CZCSderived phytoplankton pigment concentrations off the western Iberian Peninsula. Int. J. Remote Sens. 20: 1363–1403.
- Pond S. 1975. The exchanges of momentum, heat and moisture at the ocean-atmosphere interface. In: Numerical Models of Ocean Circulation. Proceedings of the Symposium. National Academy of Sciences, Washington DC, pp. 26–28.
- Pushon S, Moore RM. 2004a. Nitrous oxide production and consumption in a eutrophic coastal embayment. Mar. Chem. 91: 37–51.
- Pushon S, Moore RM. 2004b. A stable isotope technique for measuring production and consumption rates of nitrous oxide in coastal waters. Mar. Chem. 89: 159–168.
- Rhee TS. 2000. The process of air-water gas exchange and its application. PhD thesis, Texas A&M University, 272 pp.
- Seitzinger SP, Kroeze C, Styles RV. 2000. Global distribution of N_2O emissions from aquatic systems: Natural emissions and anthropogenic effects. Chemosphere: Global Change Sci. 2: 267–279.
- Walter S, Bange HW, Breitenbach U, Wallace, DWR. 2006. Nitrous oxide in the North Atlantic Ocean. Biogeosciences 3: 607–619.
- Wanninkhof R. 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. C 97: 7373–7382.
- Ward BB. 2000. Nitrification and the marine nitrogen cycle. In: Kirchman DL (ed.), Microbial Ecology of the Ocean. Wiley-Liss, New York, pp. 427–453.
- Waterhouse AF, Allen SE, Bowie AW. 2009. Upwelling flow dynamics in long canyons at low Rossby number. J. Geophys. Res. 114, C05004, doi: 10.1029/2008JC004956.
- Weiss RF. 1970. The solubility of nitrogen, oxygen and argon on water and seawater. Deep-Sea Res. I 17: 721–735.
- Weiss RF, Price BA. 1980. Nitrous oxide solubility in water and seawater. Mar. Chem. 8: 347–359.
- Weiss RF, Van Woy FA, Salameh PK. 1992. Surface water and atmospheric carbon dioxide and nitrous oxide observations by shipboard automated gas chromatography: Results from expeditions between 1977 and 1990. Scripps Institute of Oceanography Reference 92–11. ORNL/CDIAC-59, NDP-044. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 144 pp.
- Wittke F, Kock A, Bange HW. 2010. Nitrous oxide emissions from the upwelling area off Mauritania (NW Africa). Geophys. Res. Lett. 37, L12601, doi: 10.1029/2010GL042442.
- Yool A, Martin AP, Fernández C, Clark DR. 2007. The significance of nitrification for oceanic new production. Nature 447: 999–1002, doi:10.1038/nature05885.

Yoshinari T. 1976. Nitrous oxide in the sea. Mar. Chem. 4: 189–202.

Zhang J, Gilbert D, Gooday AJ, Levin L, Naqvi SWA, Middelburg JJ, Scranton M, Ekau W, Peña A, Dewitte B, Oguz T, Monteiro PMS, Urban E, Rabalais NN, Ittekkot V, Kemp WM, Ulloa O, Elmgren R, Escobar-Briones E, Van der Plas AK. 2010. Natural and human-induced hypoxia and consequences for coastal areas: Synthesis and future development. Biogeosciences 7: 1443–1467, doi: 10.5194/bg-7-1443-2010.

> Recived in May 2010, received in revised form March 2011, accepted April 2011.