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Carotenoid content in Ulva lactuca cultivated 
under aquaculture conditions and collected 
from intertidal beds in southeastern Brazil: 
biotechnological implications for biomass use 
and storage

Alejandra Irina Eismann1, Renata Perpetuo Reis2, Johana Marcela Concha Obando1,3*, 
Thalisia Cunha dos Santos3, Diana Negrão Cavalcanti1,3

Abstract. Ulva lactuca is an edible green macroalga (Chlorophyta) that can be produced 
in cultivation systems; it is a natural source of high-value molecules. Ulva lactuca produces 
metabolites including carotenoids, which are pigments with antioxidant properties that are in 
high demand in the health and nutraceutical industries and improve the nutritional quality of 
U. lactuca biomass. We studied the carotenoid and chlorophyll content in U. lactuca thalli 
collected in 3 different environments in the state of Rio de Janeiro, Brazil: the intertidal beds 
of the urban beaches of Arpoador and Boa Viagem and a continental integrated multi-trophic 
aquaculture (IMTA) facility. Carotenoid conservation was evaluated during 1 week, 2 weeks, 
and 4 weeks of storage. We compared the molecules in fresh U. lactuca collected during the 
dry season (July 2018) and rainy season (February 2019). The content of carotenoids, such as 
β-carotene + zeaxanthin, lutein + antheraxanthin, violaxanthin, neoxanthin, and their deriv-
atives (aurochrome and auroxanthin), were analyzed in 100% acetone extracts by ultraviolet 
visible (UV/vis) spectrophotometry and monitored by thin layer chromatography (TLC) and 
proton nuclear magnetic resonance (1H-NMR). The extracts of dried U. lactuca produced 
in the IMTA facility presented higher pigment yields than the dried biomass collected from 
intertidal beds. Over 4 weeks of storage, carotenoids were well conserved in U. lactuca pro-
duced in the IMTA facility, in contrast to what was observed in U. lactuca collected from 
the intertidal beds, which showed carotenoid losses. In addition, we observed differences 
in carotenoid content between the dry and rainy seasons in U. lactuca collected from Boa 
Viagem Beach. However, the U. lactuca collected from Arpoador Beach or produced by the 
IMTA facility only exhibited significant differences in chlorophyll content. We conclude that 
U. lactuca produced by the IMTA facility constitutes a potential source of pigments such as 
β-carotene, lutein, and violaxanthin.

Key words: antioxidant, aquaculture, carotenoids, commercial application, green seaweed, 
Ulva algae, short-term storage.

Introduction

Marine macroalgae are of notable economic importance, 
serving as staples in human diets, substrates in biofuel pro-
duction, biostimulants in agriculture, and reservoirs of high-
value metabolites (Santos et al. 2023a, 2023b, 2024). Green 
macroalgae of the genus Ulva (Chlorophyta), formally 
described by Linnaeus in 1753, encompass a range of edible 
algae belonging to the Ulvaceae family. Among the most 

recognized species are the sea lettuces, which are widely dis-
tributed along coastlines and commonly observed in rocky 
intertidal shores in urban areas. Ulva species exhibit short life 
cycles characterized by high biomass followed by losses in 
biomass density (Calheiros et al. 2021). 

Ulva species show high growth rates and a wide toler-
ance to abiotic factors (Osuna-Ruiz et al. 2019), which allows 
them to perform optimally in monocultures, in vitro cultures, 
and integrated multi-trophic aquaculture (IMTA) (Obando 
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et al. 2022, Pitta et al. 2022). In IMTA, Ulva species are used 
as biofilters to assimilate dissolved nutrients (C, N, and P) 
from the effluents of fish and shellfish, consequently reducing 
water treatment costs and ensuring the production of high-
value products (Silva et al. 2015, Nardelli et al. 2019, Oliveira 
Soares et al. 2022). 

Considering the potential for the aquacultural produc-
tion of Ulva biomass and the quest to develop innovative 
biotechnological applications to enhance the economic 
value of these species, several studies have emphasized that 
Ulva species are natural sources of highly valuable metab-
olites, including carotenoids (El-Baky et al. 2008, 2009; 
Chakraborty and Paulraj 2010; Eismann et al. 2020). The 
most abundant species observed in the state of Rio de Janeiro, 
Brazil, are the foliaceus Ulva fasciata Delile, Ulva lactuca 
Linneaus (sea lettuce), and the tubular Ulva flexuosa Wulfen 
(Calheiros et al. 2021, Carneiro et al. 2022). Recently, 
U. fasciata was recognized as a variant of U. lactuca (Guiry 
and Guiry 2024). Notably, in the capital city of Rio de 
Janeiro, these Ulva species have been cultivated in IMTA 
startups and sold as gastronomic and functional foods (Reis 
et al. 2017, Derner 2018, Pitta et al. 2022). Recently, the 
nutritional quality of Ulva species produced via commer-
cial cultivation systems has been analyzed, confirming the 
potential of these systems to be environmentally sustainable 
and profitable income sources (Calheiros et al. 2021, Roleda 
et al. 2021, Pitta et al. 2022). Although research on the carot-
enoid content of Ulva species has progressed in Brazil, high-
lighting the biotechnological potential of these macroalgae 
(Raymundo et al. 2004, Sousa et al. 2008, Melo et al. 2021), 
additional studies are needed. 

Carotenoids are terpenoids with C40 and conjugated 
double bonds that are commonly used in foods as natural 
colorants, antioxidants, and nutritional supplements. In the 
cosmetic and pharmaceutical industries, carotenoids have 
been utilized as nutraceuticals and antioxidants (Irwandi 
et al. 2011, Gateau et al. 2017, Maoka 2020). Carotenoids 
have photosynthetic and photoprotective properties, and 
their composition in thylakoid membranes is linked to 
chlorophylls and other factors that affect photosynthesis 
(Demmig-Adams and Adams 1996, Demmig-Adams 1998, 
Esteban et al. 2015). The carotenoids identified in Ulva 
species are synthesized by the methylerythritol phos-
phate (MEP) pathway from isoprenyl units in chloroplasts 
(He et al. 2018). It is worth noting that the following are 
common carotenoids reported in Ulva species: β-carotene, 
lutein, violaxanthin, antheraxanthin, zeaxanthin, and neox-
anthin (El-Baky et al. 2009, Eismann et al. 2020). 

The degradation of pigments, including that of carot-
enoids, is due to oxidation reactions caused by expo-
sure to oxidant factors, including heat, light, acids, and 
oxygen. Carotenoid losses in stored dry biomass have cre-
ated a bottleneck in the commercialization of Ulva species 
(Goldman et al. 1983, Woodall et al. 1997, Pérez-Galvez 
and Mínguez-Mosquera 2001). Carotenoid conservation 

in macroalgae biomass depends on different factors and 
varies among organisms; microalgae and vegetables can 
conserve carotenoids for periods of time ranging from 
10 days to 3 months (Sugumaran et al. 2022). For instance, 
Nannochloropsis salina was successfully stored at 3 tem-
peratures (5 °C, 20 °C, or 40 °C) for up to 8 weeks (Safafar 
et al. 2017), while Spinacia oleracea L. samples were 
stored in polypropylene bags at 2 °C or 10 °C (Bergquist 
et al. 2006). Furthermore, the effects of storage time 
(14 days or 35 days), storage conditions (vacuum-packed 
or non-vacuum packed), storage temperature (–20 °C, 
4 °C, or 20 °C), and preservation method (spray-drying or 
freeze-drying) on the stability of lipids and carotenoids in 
fresh microalgal paste of Phaeodactylum tricornutum have 
been analyzed (Ryckebosch et al. 2011). Although different 
drying methods affect the chemical profiles of Ulva species 
(Uribe et al. 2018), it is not known how these methods affect 
carotenoid conservation.

Previous studies of Ulva species have evaluated var-
ious factors, such as the sustainability of biomass sources, 
storage, and carotenoid yield, and focused on commercial 
demand in the food and pharmaceutical sectors. In this study, 
we analyzed and compared the carotenoid and chlorophyll 
profiles of U. lactuca collected from intertidal sites and cul-
tivated in an IMTA facility. Our work enhances our under-
standing of pigments and carotenoids in U. lactuca grown 
under controlled aquaculture conditions and collected from 
natural intertidal beds and their responses to storage condi-
tions. Ulva lactuca grown in IMTA systems exhibited higher 
carotenoid content and better pigment conservation than 
U. lactuca collected from the intertidal beds, supporting the 
suitability of IMTA-grown U. lactuca for biotechnological 
applications.

Materials and methods

Sample collection

The sampling sites were located in Rio de Janeiro, 
southeastern Brazil. Naturally growing U. lactuca was col-
lected from beds in the rocky intertidal site of Arpoador 
Beach, (22°59′23.399″ S, 43°11′17.3024″ W) and the 
estuarine waters of Boa Viagem Beach (22°54′33.79″ S, 
43°7′50.4288″ W). Additionally, U. lactuca was collected 
from the IMTA startup D’Alga Urban Aquaculture. We col-
lected samples of U. lactuca from these locations during dry 
austral winter (July 2018) and the rainy austral summer (Feb-
ruary 2019).

Sample replicates were collected once per season. Collec-
tion was carried out on days with tides below 0.4. All col-
lections were performed in the early morning to avoid direct 
carotenoid degradation due to high light radiation (Cruces et al. 
2019). The IMTA-produced U. lactuca was grown with Nile 
Tilapia (Oreochromis niloticus Linnaeus, 1758) in a closed 
recirculating seawater system (40,000 L total volume) using a 
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blend of artificial (80%) and natural seawater (20%) collected 
at Cabo Frio, Rio de Janeiro (22°52′20″ S, 42°0′20″ W). 

We cultivated the algal specimens in indoor alga tanks 
(0.5 m2 and 80 L) covered with ultraviolet (UV) filters. The 
initial algal densities were ~3 g·L–1. Data loggers (UA-002-
08, HOBO Pendant, Onset, Bourne, USA) were used to mon-
itor the water temperature every hour. Ten specimens from 
each sampling site were used to identify the presence of the 
Ulva species. Voucher materials of each species were depos-
ited in the Botanical Garden Herbarium in Rio de Janeiro. We 
used the information from Guiry and Guiry (2024) to deter-
mine the taxonomic nomenclature and identify species.

After collection, the algal biomass was transported to the 
laboratory in a polystyrene box with ice to ensure it was prop-
erly preserved. Subsequently, the samples were stored at 4 °C 
until the next day. The samples were thoroughly rinsed with 
tap water to remove adhered sediments and other substances. 
The excess water in the thalli was removed using a lettuce 
dryer and dried in ambient air with dim light for 20 minutes. 
Then, 5 ± 0.01 g of thalli were weighed in an analytical bal-
ance and stored for subsequent carotenoid conservation anal-
yses or immediately subjected to pigment extraction.

Short-term storage experiments

The U. lactuca thalli from the dry season were used to 
analyze the conservation of carotenoids. For this experiment, 
we stored 5 ± 0.01 g of fresh thalli in paper envelopes (in 
triplicate) for 1 week, 2 weeks, or 4 weeks. The envelopes 
containing the algal biomass were stored in a dark, ventilated 
place in the laboratory at ambient temperature. After each 
storage period, the entire sample inside the paper envelope 
was submitted for pigment extraction.

Crude extracts of Ulva lactuca for pigment extraction

In their work, Thayer and Björkman (1990) used 5 g of 
acetone in 5 mL for the extraction of dry and fresh material. 
The final extraction time was 0–24 h at 4 °C (Thayer and 
Björkman 1990). The extract was filtered and evaporated in 
a rotary evaporator using a thermal bath at 40 °C. Finally, the 
samples were filled with N2, sealed, and stored at –20 °C, as 
recommended by Lashbroke et al. (2010) for carotenoid con-
servation of plant extracts.

UV/vis spectrophotometry

The Gauss-Peak Spectra (GPS) method (Kupper 
et al. 2007) was used to calculate the carotenoid and chlo-
rophyll content in the crude extracts. In specific terms, solu-
tions of crude extracts in acetone were prepared in a 1:1 ratio 
(weight:volume). Subsequently, the UV/vis absorption spectra 
between 350 and 700 nm of the solutions were acquired 
(1-nm interval) using a UV/vis digital spectrophotometer 

(Spectramax, Molecular Devices, San Jose, USA) integrated 
to data acquisition software. The absorbance curves were 
adjusted between 0.5 and 1 mL by dilution in 100% acetone. 
To obtain the concentration of carotenoids, chlorophylls, and 
their degradation products in the solutions, we use the GPS 
equations programmed in Sigma Plot by Kupper et al. (2007). 
We quantified the β-carotene + zeaxanthin, lutein + anther-
axanthin, violaxanthin, neoxanthin, the β-carotene isomeriza-
tion product aurochrome, chlorophyll (Chl) a, Chl b, derived 
pheophytin (Phe) a, and Phe b in 100% acetone solutions 
(Kupper et al. 2007) (Fig. 1). It is worth noting that the indi-
vidual concentrations of carotenoid pairs were not separated 
because they had identical absorption spectra between 350 nm 
and 700 nm. Finally, the concentration of carotenoids in the 
extract (Cextract) was calculated using the following equation: 

   
Cextract = CiGPS # dil # Wextract

–1  , (1)

where dil is the dilution factor, Wextract
–1  is the extract weight, 

and CiGPS is the pigment concentration in the solvent calcu-
lated by the GPS method.

Chemical analysis

Thin layer chromatography (TLC) analyses were per-
formed to evaluate carotenoid conservation using silica gel 
plates (60 GF254; Merck, Rahway, USA) and an elution 
solvent of n-hexane:acetone:isopropyl alcohol (69:30:1) 
(Wright et al. 1997). Each U. lactuca extract (0.5 mg) was 
spotted on a TLC plate to ensure accurate results. Tenta-
tive carotenoid identification was achieved by comparing 
chromatic profiles and retention factors with the pigment 
pattern of fresh spinach extract in 100% acetone and infor-
mation from the literature (Perucka and Oleszek 2000, 
Rodriguez-Amaya 2001, El-Baky et al. 2008, Mikami and 
Hosokawa 2013). Additionally, TLC plate adaptation was 
performed for preparative chromatography. Each extract 
was chromatographed using 2 different eluent systems 
(petroleum ether:acetone [7:3] and dichloromethane:ethyl 
acetate [4:1]). Subsequently, the colored bands were scraped 
off to isolate compounds with higher spectral purity, 
which were later confirmed by absorption spectroscopy 
(350–700 nm) in 100% acetone (Wright et al. 1997). Epox-
ides were revealed with HCl fume; these structures change 
color from yellow or orange to blue or green following 
exposure (Rodriguez-Amaya 2001, Sherma and Fried 2003). 

Proton nuclear magnetic resonance (1H-NMR) was 
used to evaluate carotenoid conservation in the IMTA 
extracts by comparing the olefinic region of the 1H-NMR 
spectra (6–7 ppm) according to the quantification methods 
developed by Valverde and This (2007) and Guadagno 
et al. (2013). Carotenoid identification was performed using 
their reported chemical shifts in CDCl3, properly referenced 
in Putzbach et al. (2005), Sobolev et al. (2005), Valverde and 
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Figure 1. Pigment products quantified by ultraviolet visible (UV/vis) spectrophotometry.
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This (2008), and Sivathanu and Palaniswamy (2012). The 
area below the chemical shifts of the carotenoids was nor-
malized by the tetramethylsilane (TMS) area, according to 
the methods of Guadagno et al. (2013). The chemical shifts 
of the solvents, impurities, chlorophylls, and derived mole-
cules (pheophytins and pheophorbide) were discarded from 
the analyses (Sobolev et al. 2005, Fulmer et al. 2010).

Data analysis

Cochran homogeneity of variance tests were conducted 
on the data. Parametric data were analyzed using an analysis 

of variance (ANOVA) and student t-tests. Non-parametric 
data were evaluated with Kruskal–Wallis or Mann–Whitney 
tests. All statistical tests were performed in Statistica 7 
(StatSoft Inc., Tulsa, USA). Three replicas were used, and 
the confidence interval for the significance tests was 95% 
(P = 0.05).

Results

Pigment content in Ulva lactuca fresh biomass

The UV/vis results revealed a higher concentration of 
carotenoids in fresh U. lactuca thallus extracts during the 

Figure 2. Pigment content (mean ± standard deviation) in Ulva lactuca collected from (a) Arpoador Beach, (b) an integrated multi-trophic 
aquaculture (IMTA) facility, and (c) Boa Viagem Beach. Pigments: aurochrome (Auro), lutein (Lut) + antheraxanthin (Anth), β-carotene 
(β-car) + zeaxanthin (Zea), violaxanthin (Viol), chlorophyll (Chl) a + pheophytin (Phe) a, and Chl b +  Phe b. *Significant difference (P < 
0.05). Pigment content is given per gram of extract.
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dry season compared to the rainy season in Arpoador Beach 
(Fig. 2a). Significant differences were found in β-carotene 
+ zeaxanthin content between the dry and rainy periods at 
this beach, whereas violaxanthin levels were higher during 
the rainy period. No significant differences in carotenoid 
content were observed between the 2 periods in U. lactuca 
cultivated in the IMTA facility; however, chl a + phe a and 
chl b + phe b levels were significantly higher during the dry 
season (Fig. 2b). Ulva lactuca collected from Boa Viagem 
Beach exhibited a significantly higher carotenoid content 
during the dry season. Specifically, β-carotene + zeaxanthin 
and lutein + antheraxanthin were the carotenoids that showed 
these differences (Fig. 2c). Chlorophyll content was signifi-
cantly higher in fresh biomass collected from Boa Viagem 
Beach and the IMTA system during the dry season (Supple-
mentary Material Table S1).

Pigments conservation during storage

The extracts of U. lactuca thalli cultivated in the IMTA 
facility exhibited higher levels of carotenoids, chlorophylls, 
and their degradation products. It is important to highlight 
that the data used for comparison were from Boa Viagem 
Beach and the IMTA system, as these values were higher than 
those of Arpoador Beach.

Pigment conservation was analyzed in U. lactuca 
biomass collected from the different sites and stored for 
1 week, 2 weeks, or 4 weeks. The UV/vis results showed 
that carotenoid content in U. lactuca from the IMTA facility 
was well conserved after 4 weeks of storage. However, 
U. lactuca collected from Arpoador Beach lost β-carotene 
+ zeaxanthin content during the first week of storage 
and then lost violaxanthin content in the fourth week of 
storage (Supplementary Material Table S2). In addition, 
chlorophylls and derived pheophytins were well conserved 
in the stored biomass collected from the IMTA facility and 
Arpoador Beach. 

 Chemical analyses to monitor pigments during storage

Thin layer chromatography profiles were employed 
to complement the UV/vis results. A noticeable tendency 
toward color loss in the β-carotene band in extracts from 
Arpoador Beach and Boa Viagem Beach after 4 weeks 
of storage was evident, compared to what was observed 
after 1 week or 2 weeks of storage. Conversely, the inten-
sity of the β-carotene band in U. lactuca from the IMTA 
facility was maintained. In comparison, the TLC profile of 
the fresh IMTA extract exhibited more intense bands and 
an additional yellow band. The yellow and orange bands 
in these extracts were tentatively identified as β-carotene, 
lutein + zeaxanthin, and neoxanthin. The additional band 
observed in the IMTA extract was tentatively identified as 
violaxanthin. Dried stored samples were analyzed through 
1H-NMR; the olefinic region (6–7 ppm) of the spectra was 

chosen because it accumulates the hydrogen signals of carot-
enoids (Sobolev et al. 2005). Carotenoids signals were high-
lighted in this region to aid analyses.

The carotenoid profile was monitored during storage via 
olefinic signal patterns observed in 1H-NMR spectra, spe-
cifically in the chemical shift region below 6.60–6.64 ppm, 
which is common to all carotenoids (Sobolev et al. 2005). 
Algae spectra collected from Boa Viagem Beach and IMTA 
facility showed effective carotenoid preservation during 
the initial 2 weeks of storage, with noticeable degradation 
observed only after 4 weeks. In contrast, the spectra of the 
samples collected from Arpoador Beach showed a significant 
decrease in signal intensity between fresh and dried stored 
algae, indicating a decline in carotenoid content from fresh to 
dried states, which was likely due to degradation or isomeri-
zation during the first week of storage.

Discussion

The U. lactuca collected from the IMTA facility presented 
significantly higher carotenoid and chlorophyll yields in bio-
mass extracts compared to the samples collected from the 
intertidal beds, indicating that photosynthetic pigments were 
promoted. The IMTA facility, unlike the natural beds, was 
not subject to precipitation, desiccation, winds, grazers, or 
UV radiation; variables, such as salinity and pH, were con-
trolled in the IMTA facility. Thus, nutrient enrichment and a 
controlled environment may have enhanced the physiology 
and growth of U. lactuca, preventing oxidation reactions 
that degrade carotenoids while inducing pigment synthesis 
(Eismann et al. 2020). 

Moreover, U. lactuca grown in the IMTA facility con-
served its carotenoid content during 4 weeks of storage, 
while some carotenoid losses were observed in the stored bio-
mass of U. lactuca collected from intertidal beds. The TLC 
and 1H-NMR analyses indicated that the pigment profiles of 
U. lactuca grown in the IMTA facility and collected from the 
intertidal beds were conserved in extracts stored for 1 week. 
However, a loss of carotenoids was observed after 2 weeks 
and 4 weeks of storage in U. lactuca collected from the inter-
tidal beds. This conservation of pigments may be related to 
the presence of other compounds with antioxidant properties 
reported in U. lactuca such as tocopherols and tocotrienols 
(Ortiz et al. 2006), olefins (Ratnayake et al. 2013), sesquit-
erpenoids, (Chakraborty and Paulraj 2010), and ulvan (Alves 
et al. 2013). Pigment production and carotenoid coproduc-
tion are interesting topics to explore in future research due to 
the biotechnological potential of these molecules, which have 
garnered interest across various industrial sectors, including 
the food, pharmaceutical, cosmeceutical, and nutraceutical 
industries. 

Overall, the U. lactuca extracts were rich in chlorophylls, 
β-carotene + zeaxanthin, and lutein + antheraxanthin. The 
content of violaxanthin in IMTA extracts may be associated 
with a lower oxidation state of the thylakoid membranes 
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(Zhang et al. 2015), as well as higher overall pigment syn-
thesis. The current carotenoid market is predominantly led 
by β-carotene and lutein, as these essential pigments are uti-
lized in animal feed and dietary supplements. Thus, the abun-
dant presence of violaxanthin in U. lactuca collected from 
the IMTA facility is particularly promising. This compound 
swiftly transforms into zeaxanthin through the xanthophyll 
cycle (Zhang et al. 2015), and the antioxidant properties of 
zeaxanthin have been well documented (Sajilata et al. 2008, 
Esteban et al. 2014, Meléndez-Martinez et al. 2022). Thus, 
IMTA systems could emerge as novel and sustainable sources 
of zeaxanthin.

The significant differences in the yields of carotenoids 
and chlorophylls in the fresh biomass of U. lactuca collected 
during the rainy and dry seasons may be associated with 
the macroalgae being affected by a wide range of biotic and 
abiotic conditions (e.g., temperature, hydrodynamics, des-
iccation, and biological interactions), which directly influ-
ence growth and pigment content (Fort et al. 2019, Jiang 
et al. 2019, Calheiros et al. 2021). On the other hand, the yields 
of U. lactuca collected from the IMTA facility reflected less 
variation in growth conditions; the few differences recorded 
between seasons were associated with photosynthetically 
active radiation (PAR) and water temperature. 

Both PAR and temperature were higher in the rainy season, 
coinciding with the lower production of carotenoids and chlo-
rophylls that we observed in this work (Narrain et al. 2023). 
Some studies have identified a negative correlation between 
photosynthetic pigments and solar radiation in Ulva rotundata 
(Henley et al. 1989) and in Ulva species collected from nat-
ural beds (Figueroa et al. 2003). It is important to highlight 
that high acclimation to PAR involves a decrease in photo-
synthetic pigments as a response to the relocation of thylakoid 
membranes and antenna complexes (Esteban et al. 2015).

Our results indicate that U. lactuca cultivated in the IMTA 
facility showed higher levels of carotenoids and better pres-
ervation than U. lactuca collected from intertidal beds. The 
algae collected in natural beds showed greater variability and 
complexity, which may be attributed to the influence of var-
ious environmental factors, such as tidal variations, PAR radi-
ation, and periods of desiccation. Further sampling efforts and 
environmental analyses are necessary to provide conclusive 
evidence of metabolite production and storage in U. lactuca 
collected from natural environments.

Conclusions

The analyses conducted in this study have revealed that 
cultivation systems, such as IMTA, represent an excellent 
option to control environmental factors, which allows for 
macroalgae biomass and pigments to be produced with the 
specific qualities required for biotechnological applications. 
It is noteworthy that U. lactuca grown in the IMTA system 
demonstrated higher carotenoid content and superior pigment 
conservation over 4 weeks of storage compared to biomass 

collected from intertidal sites. Additionally, the fresh bio-
mass extracts exhibited lower pigment content during the 
rainy season, which correlated with increased PAR radiation 
and water temperature. Cultivation systems for U. lactuca 
represent a promising and sustainable source of carotenoids, 
including β-carotene, lutein, and violaxanthin. These systems 
can also be optimized to produce zeaxanthin, which exhibits 
high nutritional value and antioxidant capacity, for biotech-
nological and industrial applications.
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