Ciencias Marinas (1999), 25(2): 239–265

http://dx.doi.org/10.7773/cm.v25i2.663

CAMBIOS EN LA COMUNIDAD DE COPÉPODOS DURANTE EL ENSO 1992–93 EN EL CANAL DE SAN LORENZO, GOLFO DE CALIFORNIA

CHANGES IN THE COPEPOD COMMUNITY DURING THE 1992–93 ENSO AT SAN LORENZO CHANNEL, GULF OF CALIFORNIA

Bertha E. Lavaniegos^{1, 2} Enrique González-Navarro³

¹ Departamento de Ecología Centro de Investigación Científica y de Educación Superior de Ensenada Apartado postal 2732 Ensenada, CP 22800, Baja California, México E-mail: berlav@cicese.mx

> ² Marine Life Research Group Scripps Institution of Oceanography University of California, San Diego La Jolla, Ca. 92093-0227, USA

³ Departamento de Biología Marina Universidad Autónoma de Baja California Sur Apartado postal 19-B La Paz, CP 23081, Baja California Sur, México E-mail: egonzal@calafia.uabcs.mx

Recibido en septiembre de 1998; aceptado en marzo de 1999

RESUMEN

Se describe la estructura de la comunidad de copépodos presente en el Canal de San Lorenzo, Golfo de California, durante 1990 y el ENSO 1992–93. Entre estos periodos de recolección, la principal diferencia fue la disminución del calanoide *Nannocalanus minor*. Esta especie oceánica, distribuida principalmente en la zona ecuatorial, fue una de las dominantes en el plancton del canal de febrero a agosto de 1990. Durante el ENSO 1992–93, parece haber sido parcialmente desplazada por otra especie ecuatorial de tamaño más pequeño, *Clausocalanus arcuicornis*, y por la especie tropical costera *Undinula vulgaris*. Entre los carnívoros, *Euchaeta marina* disminuyó durante el ENSO, mientras que se observó la incidencia de *Candacia truncata* y *Candacia catula*. El tamaño de malla de la red recolectora influyó sensiblemente en la composición específica de la comunidad observada. Se capturó un 30% más de especies con una malla de 300 µm que con una de 500 µm y las abundancias de las especies de menor talla presentaron altos porcentajes de escape en esta última.

Palabras clave: El Niño, ENSO, copépodos, abundancia, Golfo de California.

ABSTRACT

The structure of the copepod community from the San Lorenzo Channel, Gulf of California, is described for 1990 and the 1992–93 ENSO. The main difference between sampling periods was the decrease of the calanoid *Nannocalanus minor*. This oceanic species, distributed mainly in the equatorial zone, was one of the dominant in the plankton of the channel from February to August 1990. During the 1992–93 ENSO it appeared to be partially displaced by another equatorial but smaller species, *Clausocalanus arcuicornis*, and the tropical coastal species, *Undinula vulgaris*. Among the carnivores, *Euchaeta marina* decreased during ENSO, while the incidence of *Candacia truncata* and *Candacia catula* was observed. The mesh size of the net used noticeably affected the community structure observed, due to the escape of organisms through the net. With the net of 300 μ m mesh size, 30% more species were collected than with the net of 500 μ m, and the abundances of the smaller species presented high escape percentages with the latter.

Key words: El Niño, ENSO, copepods, abundance, Gulf of California.

INTRODUCCIÓN

La principal fuente de variabilidad interanual en el Océano Pacífico es El Niño/Oscilación del Sur, mejor conocido como ENSO, por sus siglas en inglés. El ENSO es un calentamiento anómalo de las corrientes limítrofes orientales del Pacífico, inducido por anomalías en el campo de viento del Pacífico occidental (Philander, 1981). La oscilación irregular se propaga hacia el Pacífico oriental como una onda interna de Kelvin (Wyrtki, 1975). Como resultado del acoplamiento atmósferaoceáno se observan efectos físicos a gran escala cerca de las costas, como son: calentamiento de la capa de mezcla, elevación del nivel del mar, incremento del flujo geostrófico hacia los polos, y hundimiento de la termoclina y la nutriclina (Huyer y Smith, 1985). Los efectos biológicos del ENSO están menos documentados que los físicos. Se espera un descenso en la productividad primaria debido al bajo insumo de nutrientes, conduciendo posteriormente a un descenso en niveles tróficos superiores.

El ENSO 1992–93 fue precedido en el Pacífico ecuatorial oriental por una intensificación de vientos del oeste durante el otoño de 1991, seguida por una marcada elevación de la temperatura de la superficie marina (TSM) (McPhaden, 1993). En el sistema de la Corriente de California, se desarrolló una fuerte contracorriente cerca de la costa en dirección al Polo

INTRODUCTION

The principal cause of interannual variability in the Pacific Ocean is the El Niño Southern Oscillation, better known as ENSO. ENSO is an anomalous warming of the eastern boundary currents of the Pacific, induced by anomalies in the wind field of the western Pacific (Philander, 1981). The irregular oscillation propagates towards the eastern Pacific as an internal Kelvin wave (Wyrtki, 1975). Large-scale physical effects due to the atmosphere-ocean coupling are observed along the coast. These include a warming of the mixed layer, an elevated sea level, increased geostrophic flow towards the poles and a deepened thermo- and nutricline (Huyer and Smith, 1985). The biological effects of ENSO are less documented than the physical effects; however, a decrease in primary productivity is expected, because of the low input of nutrients that leads to a decrease in the higher trophic levels.

The 1992–93 ENSO was preceded in the eastern equatorial Pacific by an intensification of westerly winds during the autumn of 1991, followed by a marked increase in the sea surface temperature (SST) (McPhaden, 1993). In the California Current System, a strong poleward countercurrent developed along the coast during the 1992–93 ENSO (Hayward, 1993). The SST and sea surface level (SSL) rose, whereas the mixed

Norte durante el ENSO 1992-93 (Hayward, 1993). La TSM se elevó, así como el nivel de la superficie marina (NSM), mientras que la capa de mezcla registró un hundimiento (Hayward et al., 1994). Esto produjo bajas concentraciones de clorofila y, consecuentemente, disminución en la biomasa de macrozooplancton (Hayward et al., 1994; Lynn et al., 1995; Chavez, 1996). Una de las especies dominantes del zooplancton de la cuenca del sur de California, Calanus pacificus Brodsky 1948, fue reportada escasa durante 1992 (Mullin, 1995). En la región de Baja California, no está documentado el efecto del ENSO 1992-93 en el plancton. Se sabe que afectó varias pesquerías comerciales y deportivas. Hubo mayores desembarques de anchoveta norteña (Engraulis mordax Girard, 1856) y macarela del Pacífico (Scomber japonicus Houttuyn, 1782), pero menores de jurel (Seriola lalandi Valenciennes, 1833) y pez espada (Xiphias gladius Linnaeus, 1758) (Hammann et al., 1995). Las capturas de langosta también resintieron una ligera contracción de 1991 a 1993 similar a la del ENSO 1982-83 (Vega-Velázquez et al., 1996).

En el Golfo de California se registraron anomalías termohalinas en 1992 y mayor flujo geostrófico (Fernández-Barajas *et al.*, 1994). La única información acerca de los efectos biológicos en el golfo fue la declinación de la sardina del Pacífico (*Sardinops caeruleus* Girard, 1856) y anchoveta después de 1990 (Cisneros-Mata *et al.*, 1995). Con el objetivo de extraer información acerca de las consecuencias biológicas del ENSO 1992–93, se comparan en el presente estudio la composición por especies de copépodos planctónicos durante el ENSO (mayo 1992 a enero 1993) con un periodo previo al evento (febrero a agosto de 1990), en el Canal de San Lorenzo, Golfo de California.

MÉTODOS

La localidad de recolección fue el Canal de San Lorenzo (24.37°N, 110.33°W) (fig. 1). Dicho canal es la entrada sur a la Bahía de La Paz desde el sudoeste del Golfo de California. Fuertes

layer deepened (Hayward et al., 1994). This produced low concentrations of chlorophyll and a consequent decrease in the macrozooplankton biomass (Hayward et al., 1994; Lynn et al., 1995; Chavez, 1996). One of the dominant zooplankton species of the Southern California Basin, Calanus pacificus Brodsky 1948, was scarce during 1992 (Mullin, 1995). The effect of the 1992-93 ENSO has not been documented for plankton of Baja California. Many commercial and sport fisheries were affected, inasmuch as there were larger landings of northern anchovy (Engraulis mordax Girard, 1856) and chub mackerel (Scomber japonicus Houttuyn, 1782), but smaller landings of yellowtail (Seriola lalandi Valenciennes, 1833) and swordfish (Xiphias gladius Linnaeus, 1758) (Hammann et al., 1995). Lobster catches also showed a decrease from 1991 to 1993, similar to that of the 1982-83 ENSO (Vega-Velázquez et al., 1996).

Thermohaline anomalies and a greater geostrophic flow were recorded for the Gulf of California in 1992 (Fernández-Barajas *et al.*, 1994). The only information on the biological effects in the gulf was the decline in the Pacific sardine (*Sardinops caeruleus* Girard, 1856) and anchovy after 1990 (Cisneros-Mata *et al.*, 1995). In order to determine the biological consequences of the 1992–93 ENSO, this study compares the composition of the planktonic copepod species during ENSO (May 1992 to January 1993) to a period before the event (February to August 1990) in the San Lorenzo Channel, Gulf of California.

METHODS

The samplings were made in the San Lorenzo Channel (24.37°N, 110.33°W) (fig. 1), which is the southern entrance to La Paz Bay from the southwest Gulf of California. Strong tidal currents have been recorded in the channel (Obeso-Nieblas and Jiménez-Illescas, 1989), but the thermal stratification during summer is similar to that of the rest of the bay (Jiménez-Illescas *et al.*, 1994). Since 1989, SST has been recorded at a coastal station in La Paz Bay (24.25°N, 110.25°W). These

Figura 1. Mapa de la Bahía de La Paz y sitio de recolección en el Canal de San Lorenzo. Figure 1. Map of La Paz Bay and sampling site in the San Lorenzo Channel.

corrientes de marea han sido medidas en el canal (Obeso-Nieblas y Jiménez-Illescas, 1989), pero durante el verano se presenta estratificación termal como en el resto de la bahía (Jiménez-Illescas et al., 1994). Existen registros de la TSM en una estación costera (24.25°N, 110.25°W) de la Bahía de La Paz desde 1989. Estos datos se usan en el presente estudio y fueron proporcionados por el Grupo de Fluctuaciones Climáticas del Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR). También se usaron promedios mensuales del NSM para el periodo de 1989 a 1993 de una estación mareográfica de Cabo San Lucas (22.9°N, 109.9°W), proporcionados por el Grupo de Mareografía del Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE).

Las muestras de zooplancton se recolectaron con una red bongo de 60 cm de diámetro, data are used in this study, and were provided by the Grupo de Fluctuaciones Climáticas of the Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR). Monthly averages of SSL from 1989 to 1993 recorded at a tide gauge station at Cabo San Lucas (22.9°N, 109.9°W) are also used. These were provided by the Grupo de Mareografía of the Centro de Investigación Científica y de Educación Superior de Ensenada (CISESE).

Zooplankton samples were collected with a bongo net of 60 cm diameter, towed obliquely from 30 m to the surface. The mesh size of the nets was 300 and 500 μ m. A flowmeter measured the volume of water filtered through the nets. The samples were collected monthly, almost always during the day, from February to August 1990, from May to November 1992 and in January 1993 (table 1).

Fecha	Hora		Fecha	Hora
25 febrero*	12:35	1992	28 mayo	10:28
19 marzo*	20:04		10 junio	16:09
19 abril	17:14		28 julio	18:03
19 mayo	14:42		19 agosto	17:53
18 junio	21:40		24 septiembre	10:28
27 julio	13:17		21 octubre	15:05
15 agosto	19:28		13 noviembre	09:38
28 enero*	09:15			
	Fecha 25 febrero* 19 marzo* 19 abril 19 mayo 18 junio 27 julio 15 agosto 28 enero*	FechaHora25 febrero*12:3519 marzo*20:0419 abril17:1419 mayo14:4218 junio21:4027 julio13:1715 agosto19:2828 enero*09:15	Fecha Hora 25 febrero* 12:35 1992 19 marzo* 20:04 19 abril 17:14 19 mayo 14:42 18 junio 21:40 27 julio 13:17 15 agosto 19:28 28 enero* 09:15 09:15 00	Fecha Hora Fecha 25 febrero* 12:35 1992 28 mayo 19 marzo* 20:04 10 junio 19 abril 17:14 28 julio 19 mayo 14:42 19 agosto 18 junio 21:40 24 septiembre 27 julio 13:17 21 octubre 15 agosto 19:28 13 noviembre 28 enero* 09:15

Tabla 1. Fecha y hora de recolección. * Muestras de la red de $300 \,\mu m$ solamente. **Table 1.** Date and hour of sampling. * Samples from the $300 -\mu m$ -mesh net only.

arrasartrada oblicuamente desde 30 m a la superficie. El tamaño de malla de las redes fue de 300 y 500 μ m. Los volúmenes de agua filtrada por las redes se determinaron de lecturas de flujómetro. Las muestras se recolectaron mensualmente en los periodos de febrero a agosto de 1990, de mayo a noviembre de 1992 y en enero de 1993, la mayoría de ellas en horario diurno (tabla 1).

Las especies de copépodos fueron identificadas y contadas en alícuotas de 12.5 mL, obtenidas con una pipeta Stempel. Los copépodos (adultos y copepoditos) fueron separados en una o más alícuotas, hasta completar de 20 a 30 adultos de cada especie. Para las especies raras, se usó 1/8 de la muestra original. La identificación se realizó basándose en las descripciones taxonómicas de Grice (1961) para los copépodos calanoideos ecuatoriales y las de Park (1968) y la clave de Dawson y Knatz (1980) para los copépodos de aguas templado-cálidas. Para algunos géneros problemáticos, como Eucalanus y Labidocera, se consultaron los estudios de Fleminger (1967, 1973). Para los órdenes Cyclopoida, Harpacticoida y Poecilostomatoida, se usaron ilustraciones de Dahl (1912), Qing-Chao et al. (1974) y Nishida et al. (1977). Las claves taxonómicas de

The copepod species were identified and counted in 12.5-mL aliquots, obtained with a Stempel pipette. The copepods (adults and copepodides) were separated into one or more aliquots, until completing 20 to 30 adults per species. For the rare species, 1/8 of the original sample was used. The species were identified based on the taxonomic descriptions of Grice (1961) for the equatorial calanoid copepods and Park (1968) and the key of Dawson and Knatz (1980) for the copepods from warm-temperate waters. The works of Fleminger (1967, 1973) were used for some problematic genera, such as Eucalanus and Labidocera. The drawings of Dahl (1912), Qing-Chao et al. (1974) and Nishida et al. (1977) were used for the orders Cyclopoida, Harpacticoida and Poecilostomatoida. The taxonomic keys of Rose (1933) and Brodsky (1950) also served to identify the genera. The copepod collection was deposited in the Zooplankton Laboratory of CICESE.

The data on abundance were transformed prior to the statistical analysis with the function $x_i = \log_{10} [x + 1]$, with $x = \text{copepods/1000 m}^3$. A two-way analysis of variance was used to compare the log-abundances between the two nets used and years.

Rose (1933) y Brodsky (1950) sirvieron como auxiliares en la identificación de géneros. La colección de copépodos objeto de estudio se encuentra depositada en el Laboratorio de Zooplancton del CICESE.

Los datos de abundancia fueron transformados previo al análisis estadístico con la función $x_i = \log_{10} [x + 1]$, siendo $x = \text{copépodos/1000 m}^3$. Se realizó un análisis de varianza de dos vías para comparar log-abundancias entre los dos tipos de redes utilizadas y entre años.

RESULTADOS

Clima en la superficie marina

La TSM en La Paz durante el periodo de 1989 a 1996 indicó que febrero fue el mes más frío $(20.1 \pm 1.4^{\circ}\text{C})$ y septiembre el más cálido $(30.9 \pm 0.53^{\circ}\text{C})$. Anomalías mensuales de TSM mostraron valores negativos de -2° a -1°C en el invierno de 1990 (fig. 2a). No obstante, el resto de 1990 fue relativamente cálido, con ligeras anomalías positivas. El año mas frío del periodo de 1989 a 1996 fue 1991, seguido por casi dos años de anomalías positivas, hasta de 1.5°C.

A la entrada del Golfo de California, en Cabo San Lucas, el NSM durante el periodo de 1989 a 1993 indicó tendencias estacionales, con valores mínimos al iniciar la primavera y máximos en otoño. Al remover la media mensual de largo plazo, se encontraron anomalías positivas a lo largo de 1992 (fig. 2b).

Estructura de la comunidad de copépodos

Se identificaron 93 especies de copépodos; de ellas, 54 pertenecientes al orden Calanoida, 5 al orden Cyclopoida, 4 al orden Harpacticoida y 30 al orden Poecilostomatoida. Sólo 66% del total de especies se encontró en las muestras recolectadas con la red de 500 μ m (apéndices 1, 2). Las especies más frecuentes (presentes en el 75% de las muestras) fueron, en orden decreciente, *Temora discaudata, Nannocalanus minor, Oithona plumifera, Acartia danae, Centropages*

RESULTS

Sea surface climate

The SST in La Paz from 1989 to 1996 indicated that February was the coldest month (20.1 \pm 1.4°C) and September, the hottest (30.9 \pm 0.53°C). Monthly anomalies in SST showed negative values of -2° to -1°C in winter of 1990 (fig. 2a). However, the rest of 1990 was relatively warm with slight positive anomalies. The coldest year of the 1989–1996 period was 1991, followed by almost two years of positive anomalies, up to 1.5°C.

At the entrance to the Gulf of California, at Cabo San Lucas, the SSL from 1989 to 1993 showed seasonal trends, with minimum values at the beginning of spring and maximum values in autumn. Removing the long-term monthly average resulted in positive anomalies during 1992 (fig. 2b).

Copepod community structure

A total of 93 copepod species were identified; 54 of the order Calanoida, 5 of Cyclopoida, 4 of Harpacticoida and 30 of Poecilostomatoida. Only 66% of all the species occurred in the samples collected with the 500-µm net (appendices 1, 2). The most frequent species (present in 75% of the samples) were, in decreasing order, Temora discaudata, Nannocalanus minor, Oithona plumifera, Acartia danae, Centropages furcatus, Scolecithrix danae, Undinula vulgaris, Clausocalanus furcatus, Eucalanus subtenuis, Canthocalanus pauper, Corycaeus speciosus, Clausocalanus arcuicornis, Eucalanus pileatus and Copilia mirabilis. The densities of these species varied greatly, both intra- and interannually, but the principal cause of the variability was mesh size.

During the study, the copepod community structure in the San Lorenzo Channel was dependent, in part, on the mesh size used. The abundances per species were consistently higher in samples taken with the 300-µm net than with Lavaniegos y González-Navarro: Copépodos del Canal de San Lorenzo en el ENSO 1992-93

Figura 2. Anomalías mensuales de (**a**) temperatura superficial del mar en Bahía de La Paz durante el periodo de 1989 a 1996 y (**b**) nivel de la superficie marina en Cabo San Lucas durante el periodo de 1989 a 1993. Las anomalías se estimaron sustrayendo los promedios mensuales de todo el periodo de los valores mensuales por año.

Figure 2. Monthly anomalies of (**a**) sea surface temperature in La Paz Bay from 1989 to 1996 and (**b**) sea surface level at Cabo San Lucas from 1989 to 1993. The anomalies were estimated by subtracting the monthly averages of the entire period from the yearly monthly values.

furcatus, Scolecithrix danae, Undinula vulgaris, Clausocalanus furcatus, Eucalanus subtenuis, Canthocalanus pauper, Corycaeus speciosus, Clausocalanus arcuicornis, Eucalanus pileatus y Copilia mirabilis. Las densidades de estas especies fueron altamente variables intra e interanualmente, pero la principal fuente de variabilidad fue el tipo de red.

La estructura de la comunidad de copépodos del Canal de San Lorenzo durante el periodo de estudio dependió, en parte, del recolector empleado. Las abundancias por especies fueron consistentemente más altas en muestras tomadas con la red de 300 µm que con la de 500 µm de tamaño de malla. Por ejemplo, la densidad máxima alcanzada por *Oithona plumifera* fue de

the 500- μ m net. For example, the maximum density observed for *Oithona plumifera* was 23 ind m⁻³ with the 500- μ m net (appendix 2) and 417 ind m⁻³ with the 300- μ m net (appendix 1). This was the most abundant species caught with the 300- μ m net, comprising 25% of the total copepods.

The two-way analysis of variance used to compare mesh sizes and years showed that 21 species were significantly more abundant in the catches with the 300- μ m net (table 2). The common characteristic of these species is their small size (1-mm body length), which allows them to escape through the 500- μ m net. The community structure observed changes noticeably with mesh size (fig. 3a–b). The most notable cases

Tabla 2. Abundancia media (ind/1000 m³) por especies de copépodos recolectados durante 1990 y el ENSO 1992–93, con mallas de 300 y 500 μ m. Sólo se muestran las especies con diferencias significativas (P < 0.05) en el análisis de varianza de dos vías. Los datos fueron transformados con la función $x_i = \log_{10} [x + 1]$. Las medias que se presentan en las cuatro primeras columnas fueron retransformadas mediante $x = [antilog x_i] - 1$.

Table 2. Mean abundance (ind/1000 m³) per species of copepods collected during 1990 and ENSO 1992–93, with 300- and 500- μ m meshes. Only the species with significant differences (*P* < 0.05) in the two-way analysis of variance are shown. The data were transformed with the function $x_i = \log_{10} [x + 1]$. The means presented in the first four columns were retransformed using $x = [antilog x_i] - 1$.

Especies	300) µm	500)μm		ANOVA	(<i>P</i>)
	1990	1992–93	1990	1992–93	Malla	Año	Interacción
Acartia danae	6390	5639	106	208	< 0.001	0.728	0.613
Acartia tonsa	914	17	2	0	0.004	0.074	0.299
Acrocalanus andersoni	2	0	12	0	0.331	0.032	0.331
Acrocalanus longicornis	532	5043	75	5	0.001	0.889	0.042
Acrocalanus monachus	170	15	4	0	0.022	0.149	0.742
Calanus pacificus	297	18	3	0	0.012	0.131	0.629
Calocalanus pavo	268	1303	2	1	< 0.001	0.491	0.253
Calocalanus tenuis	0	48	0	0	0.013	0.013	0.013
Candacia catula	0	9	0	5	0.755	0.044	0.755
Candacia truncata	0	37	2	186	0.155	< 0.001	0.777
Centropages furcatus	4766	3492	820	262	0.025	0.433	0.653
Clausocalanus arcuicornis	1012	9220	7	91	< 0.001	0.047	0.923
Clausocalanus furcatus	12149	12559	59	20	< 0.001	0.582	0.557
Euchaeta marina	83	1	11	1	0.333	0.017	0.370
Labidocera sp.	0	0	78	0	< 0.001	< 0.001	< 0.001
Nannocalanus minor	37352	1052	8090	465	0.304	0.008	0.752
Paracalanus aculeatus	4175	2116	12	1	< 0.001	0.343	0.662
Paracalanus parvus	6397	627	0	1	< 0.001	0.297	0.065
Undinula vulgaris	146	8808	407	6820	0.703	0.002	0.526
Oithona plumifera	51853	43316	4189	1389	0.002	0.450	0.585
Corycaeus amazonicus	816	5	2	0	0.003	0.013	0.109
Corycaeus andrewsi	12	14	0	0	0.021	0.955	0.955
Corycaeus catus	126	25	2	1	0.036	0.467	0.681
Corycaeus pacificus	1601	815	47	2	0.001	0.172	0.387
Corycaeus sp.	27	613	33	307	0.776	0.006	0.627
Farranula carinata	23	340	0	1	0.001	0.132	0.372
Oncaea conifera	0	24	0	1	0.135	0.029	0.135
Oncaea media	55	70	0	0	< 0.001	0.900	0.900
Oncaea mediterranea	13	173	2	1	0.015	0.344	0.227

23 ind m⁻³ con la red de 500 μ m (apéndice 2) y de 417 ind m⁻³ con la red de 300 μ m (apéndice 1). La mejor retención obtenida con la red de 300 μ m ubica a esta especie como la más abundante, abarcando el 25% de los copépodos totales.

El análisis de varianza de dos vías, para comparar los tipos de red y los años, mostró que 21 especies fueron significativamente más abundantes en las capturas de la red de 300 µm (tabla 2). Estas especies tienen en común su pequeño tamaño (1 mm de longitud corporal), por lo que escapan a través de la red de 500 µm. La estructura de la comunidad observada cambia sensiblemente según el tipo de red (fig. 3a-b). Los casos más notables de este fenómeno fueron Clausocalanus furcatus y Acartia danae. Dichas especies fueron la segunda y tercera más abundantes, en promedio, de las muestras obtenidas con la red de 300 µm. No obstante, las capturas de dichas especies con la red de 500 µm fueron bajas, con un escape a través de la red del 63 y 42%, respectivamente (fig. 3c). Otras especies dominantes de talla pequeña que presentaron un escape superior al 50% fueron Clausocalanus arcuicornis, Paracalanus aculeatus, P. parvus y Acrocalanus longicornis.

Para el factor años, el análisis de varianza arrojó diferencias interanuales en doce especies (tabla 2). Cinco de ellas presentaron mayor abundancia en 1990 que durante 1992–93. Una de ellas, *Nannocalanus minor*, fue el calanoide dominante en el canal en cinco de los siete meses muestreados en 1990, mientras que en 1992 llegó a ocupar el penúltimo lugar en la lista de abundancia del mes de agosto e incluso estar ausente en noviembre (fig. 4d). Otras tres especies de menor abundancia (*Euchaeta marina, Corycaeus amazonicus y Labidocera* sp.) estuvieron ausentes en casi todas las recolecciones de 1992–93.

De las especies que tuvieron una abundancia significativamente menor en 1990 respecto a 1992–93, *Clausocalanus arcuicornis* y *Undinula vulgaris* pasaron de un lugar intermedio en la comunidad de 1990 a ser especies dominantes durante el ENSO 1992–93 (fig. 4h–j). Las cinco especies restantes (*Candacia truncata, C. catula,* were *Clausocalanus furcatus* and *Acartia danae*. On average, these species were the second and third most abundant in the samples obtained with the 300-µm net. However, the catches of these species with the 500-µm net were low, with escape percentages of 63 and 42, respectively (fig. 3c). Other small dominant species that had an escape percentage greater than 50 were *Clausocalanus arcuicornis*, *Paracalanus aculeatus*, *P. parvus* and *Acrocalanus longicornis*.

The analysis of variance of the years showed interannual differences for 12 species (table 2). Five of these had greater abundance in 1990 than during 1992–93. *Nannocalanus minor* was the dominant calanoid in the channel in five of the seven months sampled in 1990, but it was second to last in abundance in August 1992 and it did not occur in November (fig. 4d). Three more species with low abundance (*Euchaeta marina*, *Corycaeus amazonicus* and *Labidocera* sp.) were absent in almost all the 1992–93 samplings.

Of the species that presented a significantly lower abundance in 1990 than in 1992–93, *Clausocalanus arcuicornis* and *Undinula vulgaris* pass from intermediate species in 1990 to predominant ones during the 1992–93 ENSO (fig. 4h–j). The five remaining species (*Candacia truncata*, *C. catula*, *Calocalanus tenuis*, *Oncaea conifera* and *Corycaeus* sp.) occurred in moderate abundance during the 1992–93 ENSO, but were virtually absent in 1990. The average abundances per year and mesh size are shown in table 2. These averages are the retransformed logarithmic means.

There is a clear seasonal variability that may affect the interannual comparison, since the samplings were not conducted during the same months in both years. For example, no samplings were conducted in the autumn of 1990, and the only winter sampling during 1992 corresponds to January 1993 and there are also fewer spring samplings. Some copepods tended to increase in summer, even though they were present all year. Such was the case for *Oithona plumifera*, *Clausocalanus furcatus* and *Acartia danae* (fig. 5a–c). *Temora discaudata* showed greater

Ciencias Marinas, Vol. 25, No. 2, 1999

Lopooloo

Figura 3. Abundancia media \pm intervalo de confianza al 95% para las especies dominantes de copépodos recolectados con redes de (**a**) 300 µm y (**b**) 500 µm de tamaño de malla. (**c**) Porcentaje de escape, que es la diferencia de las capturas de ambas redes. Las especies están ordenadas según la tendencia decreciente observada con la red de 300 µm. La media e intervalos de confianza se calcularon con los datos transformados a logaritmos y posteriormente fueron retransformados. Los intervalos de confianza <1 no se muestran.

Figure 3. Mean abundance \pm 95% confidence interval for the dominant copepod species collected with (a) 300-µm and (b) 500-µm meshes. (c) Escape percentage, which is the difference of the catches with both nets. The species are ordered according to the decreasing trend obtained with the 300-µm net. The mean and confidence intervals were calculated with the data transformed to logarithms and then retransformed. The confidence intervals <1 are not shown.

Calocalanus tenuis, Oncaea conifera y *Corycaeus* sp.) tuvieron una abundancia moderada durante el ENSO 1992–93, estando virtualmente ausentes en 1990. Los promedios de abundancia para cada año y tipo de red se muestran en la tabla 2. Estos promedios son las medias logarítmicas retransformadas. abundance in spring, but a peak in September (fig. 5d). Acartia tonsa had a very similar pattern, but it was not present in summer (fig. 5e). The species that occurred during the coldest time of the year include Paracalanus parvus, Corycaeus pacificus and C. amazonicus (fig. 4a–c). Only the latter species showed significant inter-annual

Figura 4. Abundancia relativa de las especies de copépodos recolectados con la red de 300 μ m, las cuales predominaron en las épocas de primavera (**a**–**c**), primavera y verano (**d**–**f**), verano y otoño (**g**–**j**), otoño (**k**), y otoño e invierno (**l**). Los meses de 1990 se indican con barras blancas y los de 1992–93 con barras negras.

Figure 4. Relative abundance of the copepod species collected with the 300- μ m net that dominated in spring (**a**–**c**), spring and summer (**d**–**f**), summer and autumn (**g**–**j**), autumn (**k**), and autumn and winter (**l**). The months of 1990 are indicted with white bars and those of 1992–93 with black bars.

Figura 5. Abundancia relativa de las especies dominantes de copépodos recolectados con la red de 300 μ m, las cuales fueron abundantes todo el año, con máximos en verano (**a–c**) o en primavera y otoño (**d–e**). Los meses de 1990 se indican con barras blancas y los de 1992–93 con barras negras. **Figure 5.** Relative abundance of the dominant copepod species collected with the 300- μ m net, which were abundant throughout the year, with maximum values in summer (**a–c**) or spring and autumn (**d–e**). The months of 1990 are indicated with white bars and those of 1992–93 with black bars.

Obviamente existe una variabilidad estacional que podría estar influenciando la comparación interanual, ya que las muestras recolectadas no corresponden exactamente a los mismos meses para ambos años. Por ejemplo, en 1990 no se recolectaron muestras en otoño, mientras que en 1992 la única recolección invernal corresponde a enero de 1993 y hay menos recolecciones primaverales. Algunos copépodos tendieron a incrementarse en verano, aunque estuvieron presentes todo el año, como fue el caso de *Oithona plumifera, Clausocalanus furcatus* y *Acartia danae* (fig. 5a–c). *Temora discaudata* presentó differences (table 2). The dominant species in the spring-summer season were *Nannocalanus minor*, *Calanus pacificus* and *Paracalanus aculeatus* (fig. 4d–f). The decrease in *N. minor* was the most notable, after having reached a high density in the spring and summer of 1990. The greatest occurrence of many of the tropical species occurred in summer and autumn. *Centropages furcatus*, *Clausocalanus arcuicornis*, *Acrocalanus longicornis* and *Undinula vulgaris* were the most abundant species among the plankton (fig. 4g–j), reaching their maximum abundance in the autumn of 1992. As mentioned previously, *C.*

mayor abundancia en primavera, pero tuvo un pico en septiembre (fig. 5d). Acartia tonsa exhibió un patrón muy parecido, si bien desapareció completamente en verano (fig. 5e). Entre las especies que ocurrieron en la época más fría del año estuvieron Paracalanus parvus, Corycaeus pacificus y C. amazonicus (fig. 4a-c). Sólo esta última presentó diferencias interanuales significativas (tabla 2). En la temporada de primavera y verano las especies dominantes fueron Nannocalanus minor, Calanus pacificus y Paracalanus aculeatus (fig. 4d-f). El descenso de N. minor fue el más notable, después de haber alcanzado una alta densidad en primavera y verano de 1990. Numerosas especies tropicales tuvieron su principal incidencia en la temporada de verano y otoño. Entre éstas, Centropages furcatus, Clausocalanus arcuicornis, Acrocalanus longicornis y Undinula vulgaris dominaron en el plancton (fig. 4g-j) y particularmente en el otoño de 1992 presentaron su abundancia máxima. Como se mencionó anteriormente, C. arcuicornis y U. vulgaris presentaron diferencias interanuales significativas, aunque desconocemos su situación para el otoño de 1990. Finalmente, algunas especies, como Canthocalanus pauper y Eucalanus mucronatus, tuvieron mayor incidencia en otoño (fig. 4k) o en otoño e invierno (fig. 4l).

DISCUSIÓN

El desarrollo del ENSO 1992–93 fue cuidadosamente monitoreado en el Océano Pacífico oriental. Las primeras señales se registraron entre agosto de 1991 y enero de 1992. Tres episodios consecutivos y pronunciados de vientos se propagaron con dirección oeste en una gran extensión del Pacífico central y oriental (McPhaden, 1993). Asociadas a esta intensificación de los vientos se presentaron anomalías positivas de TSM en el ecuador (McPhaden, 1993), las cuales se propagaron posteriormente a las corrientes limítrofes orientales (Hayward, 1993; Hayward *et al.*, 1994; Lynn *et al.*, 1995). En el sector sur del Golfo de California, donde se encuentra la zona de estudio, la señal del ENSO 1992–93 se corroboró por las *arcuicornis* and *U. vulgaris* showed significant interannual differences, but we do not know their status in the autumn of 1990. Some species, *Canthocalanus pauper* and *Eucalanus mucronatus*, had a greater occurrence in autumn (fig. 4k) or autumn-winter (fig. 4l).

DISCUSSION

The development of the 1992-93 ENSO was carefully monitored in the eastern Pacific Ocean. The first signs were recorded between August 1991 and January 1992. Three consecutive and pronounced episodes of westerly winds propagated over a large area of the central and eastern Pacific (McPhaden, 1993). Positive anomalies in the SST at the equator were associated with these intense winds, which then turned towards the eastern boundary currents (Hayward, 1993; Hayward et al., 1994; Lynn et al., 1995). In the southern Gulf of California (where the study area is located), the beginning of the 1992-93 ENSO was identified by high temperatures, low salinities and a greater geostrophic flow during August 1992 (Fernández-Barajas et al., 1994). The SST records from 1989 to 1996 for the interior of La Paz Bay also show that 1992 was an abnormally hot year (fig. 2a). There are no records for the sea level inside the gulf, but positive SSL anomalies were recorded at the tide gauge station at Cabo San Lucas, close to the mouth of the gulf (fig. 2b). These climatic conditions are similar to those observed in the Gulf of California during the 1982-83 ENSO (Baumgartner and Christensen, 1985).

The effects of the 1992–93 ENSO on the pelagic ecosystem, beyond the physical aspects, are less documented. However, studies on the California Current suggest a decrease in plankton biomass, due to the low concentrations of chlorophyll (Hayward *et al.*, 1994), low primary productivity (Chavez, 1996) and a decrease in macrozooplankton biomass (Lynn *et al.*, 1995). The only report of changes in the species composition of the plankton is the low occurrence of the calanoid copepod *Calanus pacificus* in the

altas temperaturas, bajas salinidades y un flujo geostrófico acrecentado durante agosto de 1992 (Fernández-Barajas *et al.*, 1994). Al interior de la Bahía de La Paz, donde se cuenta con un registro de TSM de 1989 a 1996, también 1992 resultó un año anómalamente cálido (fig. 2a). No se cuenta con registros del nivel del mar en el interior del golfo, pero en una estación mareográfica de Cabo San Lucas, próxima a la boca del golfo, se registraron anomalías positivas del NSM (fig. 2b). Estas condiciones climáticas son similares a las observadas en el Golfo de California durante el ENSO previo de 1982–83 (Baumgartner y Christensen, 1985).

Los efectos del ENSO 1992-93 en el ecosistema pelágico más allá de los aspectos físicos están menos documentados. No obstante, los estudios existentes para la Corriente de California sugieren una disminución en biomasa planctónica, debido a bajas concentraciones de clorofila (Hayward et al., 1994), baja productividad primaria (Chavez, 1996) y descenso en la biomasa de macrozooplancton (Lynn et al., 1995). Respecto a los cambios en la composición de especies del plancton, sólo se ha reportado la baja ocurrencia del copépodo calanoideo Calanus pacificus en Southern California Bight (Mullin, 1995). Esto implica una fuerte alteración en la estructura del zooplancton de dicha región si se considera que esta especie regularmente es una de las dominantes en la zona nerítica durante la temporada de surgencias (Alldredge et al., 1984).

En eventos anteriores de ENSO, se ha utilizado la intrusión de especies tropicales en la zona templada como un indicador. Por ejemplo, la ocurrencia masiva de la langostilla (*Pleuroncodes planipes*), usualmente limitada a las latitudes de Baja California, se extendió por toda la costa de California durante el ENSO 1958–59 (Glynn, 1961). En el ENSO 1982–83, el eufáusido *Nyctiphanes simplex* presentó un comportamiento similar al de la langostilla (Brinton y Reid, 1986), llegando a invadir aguas costeras de Oregon (Brodeur, 1986). En áreas subtropicales, como el Golfo de California, donde especies de afinidad templado-cálida coexisten con otras de amplia distribución tropical, el uso de especies Southern California Bight (Mullin, 1995). This would imply a significant alteration in the zooplankton structure of this region, if this is considered one of the regularly dominant species in the neritic zone during the upwelling season (Alldredge *et al.*, 1984).

The intrusion of tropical species to the warm zone has been used as an indicator of previous ENSO events. For example, the massive occurrence of the pelagic red crab (Pleuroncodes planipes), usually limited to latitudes of Baja California, covered the entire coast of California during the 1958-59 ENSO (Glynn, 1961). In the 1982-83 ENSO, a behavior similar to that of the pelagic red crab was observed for the euphasiid Nyctiphanes simplex (Brinton and Reid, 1986), which reached the Oregon coast (Brodeur, 1986). In subtropical areas, such as the Gulf of California, where species of warm-temperate affinity coexist with others of wide tropical distribution, the use of indicator species is not as simple. Nyctiphanes simplex is an example. This stenotherm species extended its range northwards on the west coast of Baja California during the 1982-83 ENSO, but there was a reduced larval population in the Gulf of California (Lavaniegos and Lara-Lara, 1989). Apparently the warm temperatures of ENSO were favorable to N. simplex in its northern range, but not in its southern distribution range in the Northern Hemisphere.

Similarly, it is possible that the abundance of other warm-temperate species, such as *Calanus pacificus* and *Acartia tonsa* (whose distribution range includes the southern part of the California Current and Gulf of California), might have decreased during El Niño. Warm-water species are expected to present a lower abundance in ENSO years, especially in the winter-spring period. There are few data for the winter period in this study, since samplings were only conducted in February and March 1990 and January 1993. The occurrence of *C. pacificus* and *A. tonsa* in January 1993 was low, but it was not statistically different between 1990 and 1992–93, all months included.

Another distinctive group of the Gulf of California is that of the eastern tropical Pacific,

indicadoras resulta menos sencillo. *Nyctiphanes simplex* es un ejemplo, ya que mientras frente a la costa occidental de Baja California esta especie estenoterma extendió su distribución hacia el norte durante el ENSO 1982–83, en el Golfo de California se encontró una población larval reducida de esta especie (Lavaniegos y Lara-Lara, 1989). Aparentemente, las temperaturas cálidas observadas en el ENSO favorecieron a *N. simplex* en su límite septentrional, pero no en su límite meridional de distribución en el hemisferio norte.

En forma similar, la abundancia de otras especies templado-cálidas, tales como Calanus pacificus y Acartia tonsa (cuyo intervalo de distribución geográfica incluye la parte sur de la Corriente de California y Golfo de California), podría haber disminuido durante El Niño. Era de esperar que las especies templadas presentaran baja abundancia en los años afectados por el ENSO, especialmente en el periodo de invierno y primavera. En el presente estudio, los datos para los periodos invernales fueron limitados, puesto que sólo se recolectaron organismos en febrero y marzo de 1990 y en enero de 1993. Efectivamente, en enero de 1993 la presencia de C. pacificus y A. tonsa fue escasa, pero no se encontraron diferencias estadísticas cuando se compararon los años de 1990 y 1992-93, todos los meses incluidos

Otro grupo característico del Golfo de California es el del Pacífico tropical oriental, caracterizado en la zona costera por Undinula vulgaris, Eucalanus subtenuis, E. pileatus, Centropages furcatus, Temora discaudata y Labidocera acuta (Fleminger, 1975). Este grupo de especies está bien adaptado a los cambios estacionales extremos del Golfo de California. Durante el ENSO 1992-93, este grupo tropical endémico mantuvo alta abundancia en el Canal de San Lorenzo (figs. 3, 5; apéndices 1, 2). Más aún, U. vulgaris incrementó significativamente su número en 1992-93 comparado con 1990 (tabla 2). En contraste, Nannocalanus minor, que también es tropical pero oceánica, fue afectada negativamente por el calentamiento (tabla 2). Otro indicio de que N. minor fue negativamente

characterized in the coastal zone by Undinula vulgaris, Eucalanus subtenuis, E. pileatus, Centropages furcatus, Temora discaudata and Labidocera acuta (Fleminger, 1975). These species are well adapted to the extreme seasonal changes in the Gulf of California. During the 1992-93 ENSO, this tropical endemic group maintained a high abundance in the San Lorenzo Channel (figs. 3, 5; appendices 1, 2). Furthermore, U. vulgaris increased significantly in number in 1992-93 compared to 1990 (table 2). In contrast, Nannocalanus minor, which is also tropical but oceanic, was negatively affected by the warming (table 2). The negative impact on N. minor by the 1992–93 ENSO is shown by the fact that it recovered the level that it had in 1990, to become the principal calanoid during spring and summer 1994 (Lavaniegos and López-Cortés, 1997). Nannocalanus minor seems to be the principal herbivore in the southern Gulf of California, occupying a niche similar to that of Calanus pacificus in the central gulf. In April 1983, when another strong El Niño was beginning, low abundances of both C. pacificus and N. minor were recorded in the Gulf of California (Jiménez-Pérez, 1987; Jiménez-Pérez and Lara-Lara, 1988). These authors also used 300-µm nets and obtained high catches of the copepod Oithona sp. and the cladoceran Penilia avirostris, which they attributed to a greater abundance of nanoplankton than of microplankton. Our results indicate similar densities of Oithona before and during the 1992-93 ENSO, as well as after the event (Lavaniegos and López-Cortés, 1997). However, the abundance of Clausocalanus arcuicornis, another small calanoid, increased substantially (table 2; fig. 4h). Both C. arcuicornis and N. minor are distributed throughout the temperate waters of subtropical and tropical regions. The fact that the first increases during ENSO and the second decreases leads us to believe that the available food is of smaller size. But why then does the herbivore U. vulgaris, which is larger than N. minor, also increase during ENSO?

Some significant differences are also observed among the carnivorous copepods of the

afectada por el ENSO 1992-93, es el hecho de que esta especie pareció recuperar, después del evento, el nivel que tenía en 1990, volviendo a ser el principal calanoide durante la primavera y el verano de 1994 (Lavaniegos y López-Cortés, 1997). Nannocalanus minor parece ser el principal herbívoro en el sector sur del Golfo de California, ocupando un nicho similar al de Calanus pacificus en el sector central del golfo. En abril de 1983, cuando se manifestaba otro evento fuerte de El Niño, se registraron bajas abundancias de ambos C. pacificus y N. minor en el Golfo de California (Jiménez-Pérez, 1987; Jiménez-Pérez y Lara-Lara, 1988). Estos autores usaron también redes de 300 µm de tamaño de malla, obteniendo altas capturas del copépodo Oithona sp. y del cladócero Penilia avirostris, lo cual se atribuyó a una mayor disponibilidad de nanoplancton que de microplancton. Nuestros resultados mostraron similares densidades de Oithona antes y durante el ENSO 1992-93, así como después del evento (Lavaniegos y López-Cortés, 1997). Sin embargo, Clausocalanus arcuicornis, que es otro calanoide de pequeño tamaño, incrementó substantivamente su abundancia (tabla 2, fig. 4h). Ambas C. arcuicornis y N. minor se distribuyen en aguas cálidas a través de la zona subtropical y tropical. El hecho de que la primera aumente durante el ENSO mientras que la segunda disminuya nos conduce a pensar que el alimento disponible podría ser de menor tamaño. Pero entonces, ¿por qué se incrementa también durante el ENSO el herbívoro U. vulgaris, que es de mayor tamaño que N. minor?

También entre los copépodos carnívoros del Canal de San Lorenzo se observaron algunas diferencias significativas durante el ENSO 1992–93. *Euchaeta marina* disminuyó durante el evento respecto a 1990, mientras que *Candacia truncata* y *C. catula* sólo fueron observadas en el año de El Niño (tabla 2). La primera tiene una distribución amplia en aguas templado-cálidas y su talla casi duplica a las tallas de las dos últimas, las cuales presentan una distribución restringida a la zona ecuatorial. San Lorenzo Channel during the 1992–93 ENSO. *Euchaeta marina* decreased during the event, with respect to 1990, while *Candacia truncata* and *C. catula* were only observed in the El Niño year (table 2). The former is widely distributed in warm-temperate waters, and its size is almost double that of the latter two, which have a distribution restricted to the equatorial zone.

The seasonal variations in the copepod communities observed for the San Lorenzo Channel during the study generally coincide with the variation observed by Palomares-García (1996) for Ensenada de La Paz or Ensenada de Aripes. This lagoon is located inside La Paz Bay in the southern part. Even though the lagoon is dominated by the occurrence of Acartia clausi, A. lilljeborgi and Paracalanus parvus, many other species reach Ensenada de Aripes through the San Lorenzo Channel due to the intense tidal currents. This author sampled the lagoon during 1984, when the 1982-83 ENSO was ending, and found that the maximum abundance of *P. parvus* occurred in summer. In the San Lorenzo Channel, on the other hand, this species was associated with colder temperatures and showed a considerable decrease in summer. The low abundance of P. parvus in the channel during summer could be attributed to El Niño; however, the effects of other factors cannot be ignored without more information on how this population behaves within the lagoon and bay during longer periods.

This study reveals the need to conduct regional distribution studies in order to understand the dynamics of the copepods that inhabit the vast transition zone of the Gulf of California. The littoral fauna seems to tolerate the warming of the mixed layer produced during ENSO events, and *U. vulgaris* even showed an increase. This study shows important differences for species number and absolute abundance in relation to mesh size. The escape percentages presented will be useful for converting from 500 to 300 μ m nets, considering that many samples have been collected in the past with 500- μ m meshes.

Las variaciones estacionales de la comunidad de copépodos, detectadas en el Canal de San Lorenzo durante el periodo de estudio, coinciden en forma general con la variación observada por Palomares-García (1996) para la Ensenada de La Paz o Ensenada de Aripes. Esta laguna se encuentra en el interior de la Bahía de La Paz en su parte sur. Aunque la laguna está dominada fuertemente por la presencia de Acartia clausi, A. lilljeborgi y Paracalanus parvus, muchas otras especies llegan a penetrar en la Ensenada de Aripes, a través del Canal de San Lorenzo por las intensas corrientes de marea. Este autor realizó sus recolecciones en la laguna durante 1984, en la fase de relajación del ENSO 1982-83, y encontró que la abundancia máxima de P. parvus tenía lugar en verano. En abierto contraste, para el Canal de San Lorenzo, esta especie estuvo asociada con las temperaturas mas frías, mostrando un descenso considerable en el verano. Esta baja abundancia de P. parvus en el canal durante el verano podría atribuirse a la influencia de El Niño; sin embargo, no puede descartarse la influencia de otros factores, sin contar con más información sobre el comportamiento de esta población en la laguna y en la bahía en periodos más largos de tiempo.

El presente estudio sugiere la necesidad de realizar estudios de distribución a escala regional para entender la dinámica de los copépodos que habitan en la amplia zona de transición del Golfo de California. La fauna litoral parece haber tolerado el calentamiento de la capa de mezcla producida durante el ENSO, e incluso U. vulgaris mostró un incremento. En el estudio, se indican también importantes diferencias en el número de especies y en abundancias absolutas dependiendo del tamaño de malla usado. Los porcentajes de escape aquí presentados se consideran de utilidad como factores de conversión de malla de 500 a 300 µm, considerando que un buen número de muestras se ha recolectado en el pasado con redes de malla de 500 µm.

AGRADECIMIENTOS

Se agradece la participación de los estudiantes y técnicos durante el trabajo pesado en el mar.

ACKNOWLEDGEMENTS

Our thanks to the students and technicians who helped with the samplings at sea; to the Grupo de Mareografía of CICESE for providing the sea surface level data and the Grupo de Fluctuaciones Climáticas of CIBNOR for the sea surface temperature data used in this study. This study was financed by the Secretaría de Educación Pública, through the project "Biología y ecología de importancia comercial de la Bahía de La Paz" of the Universidad Autónoma de Baja California Sur (DGICSA 90-01-405).

English translation by Jennifer Davis.

Nuestro agradecimiento también al Grupo de Mareografía del CICESE por facilitar los datos de nivel de la superficie marina y al Grupo de Fluctuaciones Climáticas del CIBNOR por los de temperatura superficial usados en el presente estudio. Esta investigación se realizó con el apoyo financiero de la Secretaría de Educación Pública, a través del proyecto "Biología y ecología de importancia comercial de la Bahía de La Paz" de la Universidad Autónoma de Baja California Sur (convenio DGICSA 90-01-405).

REFERENCIAS

- Alldredge, A.L., Robinson, B.H., Fleminger, A., Torres, J.J., King, J.M. and Hamner, W.M. (1984). Direct sampling and *in situ* observation of a persistent copepod aggregation in the mesopelagic zone of the Santa Barbara Basin. Mar. Biol., 80: 75–81.
- Baumgartner, T. and Christensen, N., Jr. (1985). Coupling of the Gulf of California to large-scale interannual climatic variability. J. Mar. Res., 43: 825–848.
- Brinton, E. and Reid, J.L. (1986). On the effects of interannual variations in circulation and temperature upon the euphausiids of the California Current. UNESCO Tech. Pap. Mar. Sci., 49: 25–34.
- Brodeur, R.D. (1986). Northward displacement of the euphausiid Nyctiphanes simplex Hansen to Oregon and Washington waters following the El Niño event of 1982–83. J. Crustacean Biol., 6: 686–692.

- Brodsky, K.A. (1950). Calanoida of the far eastern seas and polar basin of the USSR. Keys of the fauna of the USSR, No. 35. Zool. Inst. Acad. Sci. USSR (Translation: Program for scientific translations, Jerusalem, 1967), 442 pp.
- Chavez, F.P. (1996). Forcing and biological impact of onset of the 1992 El Niño in central California. Geophys. Res. Lett., 23: 265–268.
- Cisneros-Mata, M.A., Nevárez-Martínez, M.O. and Hammann, M.G. (1995). The rise and fall of the Pacific sardine, *Sardinops sagax caeruleus* Girard, in the Gulf of California, Mexico. CalCOFI Rep., 36: 136–143.
- Dahl, M. (1912). Die copepoden der plankton expedition. I. Die corycaeinen. Plankton Expedition der Humboldt-Stiftung, 2: 1–135.
- Dawson, J.K. and Knatz, G. (1980). Illustrated key to the planktonic copepods of San Pedro Bay, Ca. Allan Hancock Found. Tech. Rep., 2: 1–106.
- Fernández-Barajas, M.E., Monreal-Gómez, M.A. y Molina-Cruz, A. (1994). Estructura termohalina y flujo geostrófico en el Golfo de California, durante 1992. Ciencias Marinas, 20(2): 267–286.
- Fleminger, A. (1967). Taxonomy, distribution and polymorphism in the *Labidocera jollae* group with remarks on evolution within the group (Copepoda: Calanoida). Proc. US Natl. Mus., 120: 1–61.
- Fleminger, A. (1973). Pattern, number, variability, and taxonomic significance of integumental organs (sensilla and glandular pores) in the genus *Eucalanus* (Copepoda, Calanoida). Fish. Bull., 71: 965–1010.
- Fleminger, A. (1975). Geographical distribution and morphological divergence in American coastalzone planktonic copepods of the genus *Labidocera*. In: L.E. Cronin (ed.), Estuarine Research, Vol. 1. Academic Press, New York, pp. 392–419.
- Glynn, P.W. (1961). The first recorded mass stranding of pelagic red crabs, *Pleuroncodes planipes*, at Monterey Bay, California, since 1859 with notes on their biology. Calif. Fish Game, 47: 97–101.
- Grice, G.D. (1961). Calanoid copepods from equatorial waters of the Pacific Ocean. Fish. Bull., 186: 171–246.
- Hammann, M.G., Palleiro-Nayar, J.S. and Sosa-Nishizaki, O. (1995). The effects of the 1992 El Niño on the fisheries of Baja California, Mexico. CalCOFI Rep., 36: 127–133.

- Hayward, T.L. (1993). Preliminary observations of the 1991–1992 El Niño in the California Current. CalCOFI Rep., 34: 21–29.
- Hayward, T.L., Mantyla, A.W., Lynn, R.L., Smith, P.E. and Chereskin, T.K. (1994). The state of the California Current in 1993–1994. CalCOFI Rep., 35: 19–35.
- Huyer, A. and Smith, R.L. (1985). The signature of El Niño off Oregon, 1982–1983. J. Geophys. Res., 90: 7133–7142.
- Jiménez-Illescas, A.R., Obeso-Nieblas, M., Alatorre-Mendieta, M.A., Troyo-Diéguez, S. y García-Escobar, H. (1994). Hidrología de la Bahía de La Paz. Oceanología. Unidad Educ. Cien. Tecnol. Mar, México, 1(2): 115–131.
- Jiménez-Pérez, J.C. (1987). Características estructurales del zooplancton del Golfo de California durante el fenómeno de El Niño (1982–1983). Tesis de Maestría, Centro de Investigación Científica y de Educación Superior de Ensenada, México.
- Jiménez-Pérez, J.C. and Lara-Lara, J.R. (1988). Zooplankton biomass and copepod community structure in the Gulf of California during the 1982–1983 El Niño event. CalCOFI Rep., 29: 122–128.
- Lavaniegos, B.E. and Lara-Lara, D. (1989). Effects of the 1982–83 El Niño event on the euphausiid populations of the Gulf of California. CalCOFI Rep., 30: 73–87.
- Lavaniegos, B.E. and López-Cortés, D. (1997) Fattyacid composition and community structure of plankton from the San Lorenzo Channel, Gulf of California. Estuar. Coast. Shelf Sci., 44: 845–854.
- Lynn, R.J., Schwing, F.B. and Hayward, T.L. (1995). The effect of the 1991–1993 ENSO on the California Current system. CalCOFI Rep., 36: 57–71.
- McPhaden, M.J. (1993). TOGA-TAO and the 1991–93 El Niño-Southern Oscillation event. Oceanography, 6: 36–44.
- Mullin, M.M. (1995). The Californian El Niño of 1992 and the fall of *Calanus*. CalCOFI Rep., 36: 175–178.
- Nishida, S., Tanaka, O. and Omori, M. (1977). Cyclopoid copepods of the family Oithonidae in Suruga Bay and adjacent waters. Bull. Plankton Soc. Japan, 24: 43–82.
- Obeso-Nieblas, M. y Jiménez-Illescas, A.R. (1989). Propagación de la constituyente m2 de la marea en la Bahía de La Paz, BCS, México, mediante un

modelo bidimensional hidrodinámico numérico. Inves. Mar. Centro Interdisc. Cienc. Mar., Inst. Politéc. Nal., México, 4(2): 140–301.

- Palomares-García, J.R. (1996). Estructura espacial y variación estacional de los copépodos en la Ensenada de La Paz. Oceánides, México, 11(1): 29–43.
- Park, T.S. (1968). Calanoid copepods from the central North Pacific Ocean. Fish. Bull., 66: 527–572.
- Philander, S.G. (1981). The response of equatorial oceans to a relaxation of the trade winds. J. Phys. Oceanogr., 11: 176–189.
- Qing-Chao, C., Shu-Zhen, Z. and Chang-Shou, Z. (1974). On planktonic copepods of the Yellow Sea

and the East China Sea. II. Cyclopoida and Harpacticoida. Studia Marina Sinica, 9: 27–100.

- Rose, M. (1933). Copépodes Pelágiques. Faune de France No. 26. Paul Lechevalier, Paris, 374 pp.
- Vega-Velázquez, A., Espinoza-Castro, G. y Gómez-Rojo, C. (1996). Pesquería de langosta *Panulirus* spp. En: M. Casas-Valdez y G. Ponce-Díaz (eds.), Estudio del Potencial Pesquero y Acuícola de Baja California Sur. Centro de Investigaciones Biológicas del Noroeste, Baja California Sur, México, pp. 227–261.
- Wyrtki, K. (1975). El Niño: The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5: 572–584.

Appendix 1. Abundance (ind/1000	0 m ³) of	copep	ods (cc	pepodi	des and	adults)	collect	ed wit	n the 3(1-mŋ-0	nesh ne	it.			
Especies	9002	9003	9004	9005	9006	9007	9008	9205	9206	9207	9208	9209	9210	9211	9301
Orden Calanoida															
Acartia danae Giesbrecht 1889	4007	2189	4088	3935	61857	6427	7752	7481	34286	20419	7669	4412	3669	166	9422
Acartia lilljeborgi Giesbrecht 1889						415									
Acartia negligens Dana 1849					4418		535	6484	2078		568		3494		2899
Acartia tonsa Dana 1852	13240	5893	46168	33732	4418			7481					349	3487	
Acrocalanus andersoni Bowman 1958							1303								
Acrocalanus longicornis Giesbrecht 1888	523		481	3514	13255	2073	501	14588	4675	1771	7385	2753	2621	1993	32616
Acrocalanus monachus Giesbrecht 1888			1683	1968	57439	22392			260	521			175	166	
Calanus pacificus Brodsky 1948	25087	10608	2885	984	276			842	16104						1450
Calocalanus pavo Dana 1849	174	168		3092	5302	518	401	3741	4502	638	994	66	655	3487	5074
Calocalanus plumulosus Claus 1863					552	207									
Calocalanus styliremis Giesbrecht 1888					11488	726	301	281	1732		852				725
Calocalanus tenuis Farran 1926								2338	173	365	142				1450
Candacia catula Giesbrecht 1889										456		66		3487	
Candacia curta Dana 1849	3310	674		141	1657	622			2338			331	3145	332	2174
Candacia truncata Dana 1849								468			568	397	262	166	
Canthocalanus pauper Giesbrecht 1888		337	721	2389	1933	829	1002			273	426	397	19918	498	725

Apéndice 1. Abundancia (ind/1000 m³) de copépodos (copepoditos y adultos) recolectados con la red de 300 μm de tamaño de malla. **Appendix 1.** Abundance (ind/1000 m³) of conenods (conenods (conenods (conenods)) and (conenods) (conenods)

Ciencias Marinas, Vol. 25, No. 2, 1999

Apéndice 1 (Cont.)															
Especies	9002	9003	9004	9005	9006	9007	9008	9205	9206	9207	9208	9209	9210	9211	9301
Centropages elongatus Giesbrecht 1896														166	
Centropages furcatus Dana 1849	2265	674	481	7871	79531	22392	5413	2672	4364	820	3124	6707	5451	966	20294
Centropages gracilis Dana 1849				141	552	207		842				66			725
Clausocalanus arcuicornis Dana 1849	2091	7544	721	1	92199	829	601	9351	24935	13127	18747	529	7862	15055	14496
Clausocalanus farrani Sewell 1929						829	200								
Clausocalanus furcatus Brady 1883	2787	6129	4088	55095	92786	19489	5613-17	73559	60260	19325	29540	132	14676	2214	23918
Clausocalanus mastigophorus Claus 1863											1136				
Clausocalanus parapergens Frost y Fleminger 1968								468							
Clausocalanus sp.	2091				276										
Eucalanus mucronatus Giesbrecht 1888				3092	32254	1037	702	4738		638	2698	7942	3014	1	02922
Eucalanus pileatus Giesbrecht 1888	6770	1852	481	1405	3590			1746	12641		284	1787	2621	4317	5798
Eucalanus sewelli Fleminger 1973	3484	8015		281	5799	1762		1995	2078	456		132	655		20294
Eucalanus subtenuis Giesbrecht 1888	348	505	721	8433	3866			3242	866	638	142	132	1179	498	5798
Euchaeta longicornis Giesbrecht 1888															1450
Euchaeta marina Prestandrea 1833	174	1010		843	1933		100	561							
Euchaeta media Giesbrecht 1888						1140									
Euchaeta wolfendeni Scott 1909	697					104		187			284		524	2823	3624

259

Apéndice 1 (Cont.)															
Especies	9002	9003	9004	9005	9006	2006	9008	9205	9206	9207	9208	9209	9210	9211	9301
Euchaeta sp.												265			
<i>Labidocera acuta</i> Dana 1849				141	1657			14214	1169		142	993	1048		1450
Labidocera acutifrons Dana 1849					3314	415	401	4021							
Labidocera diandra Fleminger 1967								299		456			786		
Lucicutia flavicornis Claus 1863		168								182					
Nannocalanus minor Claus 1863	91986	4546	61557	10494 2	01036	44784	41699	3117	56104	12397	142	265	524		34790
Paracalanus aculeatus Giesbrecht 1888	3310		9234	89951	17087	8293	8286	17954	6753	2917	5113	397	4543	1	23216
Paracalanus parvus Claus 1863	5401	14537	1202	48349	6628	3870	3742	6733	1299	104	1988		1048	830	15221
Pleuromamma gracilis Claus 1863	523	1684					100			182	1704				
<i>Pontella</i> sp.													131		
<i>Pontellina plumata</i> Dana 1849				422	828				260					498	
Pontellopsis occidentalis Esterly 1906	348				276										
Pontellopsis regalis Dana 1849								655							
Rhincalanus nasutus Giesbrecht 1888	11498	2863			828			94	130						97123
Scolecithrix danae Lubbock 1856	14402	4883	240	1687	13697	933	200	1683	11429	3646	568	529	131	1494	15946
Scolecithricella sp.					1933										
<i>Temora discaudata</i> Giesbrecht 1892	5749	5725	16832	7027	68485	1866	1203	6234	4329	2097	4734	6530	3744	1162	62333
Undinula darwini Lubbock 1860	348	168				622	100	9426	606		284			166	
Undinula vulgaris Dana 1852			240	141	552	7671	10425	6733	14026	9116	10225	5030	47174	11955	1450

Ciencias Marinas, Vol. 25, No. 2, 1999

Orden Cyclopoida	9002	9003	9004	9005	9006	9007	9008	9205	9206	9207	9208	9209	9210	9211	9301
Oithona nana Giesbrecht 1892				2249											
Oithona plumifera Baird 1843	4878	21806	25969 1	77653 2	84984 10	53380 4	44105	41146	50909	99180	82940	6883	37740	6642 4	16761
Oithona robusta Giesbrecht 1892									173			794			
Oithona setigera Dana 1853	174						1604			3646	3408				
Oithona tenuis Rosendorn 1917						9123									
Orden Harpacticoida															
Clytemnestra rostrata Brady 1883							100								
Clytemnestra scutellata Dana 1852										91					
Euterpina acutifrons Dana 1852					276										2174
Macrosetella gracilis Dana 1852						104									
Orden Poecilostomatoida															
Copilia mirabilis Dana 1849	174	168		2249	5799	207		1029	623	273	142	728		664	2174
Corycaeus agilis Dana 1849													262	166	
Corycaeus amazonicus Dahl 1912	523	7308	33664	13493	1381		100						1048		2899
Corycaeus andrewsi Farran 1911	1742					415	100						7076	166	2174
Corycaeus catus Dana 1848	523		1683	6184	99413			94	1870	638	1846				
Corycaeus clausi Dahl 1894	2265				2209	1244	100	94	2286			132			11597
Corycaeus dubius Farran 1911										182		529			
Corycaeus flaccus Giesbrecht 1891									208						
Corycaeus latus Dana 1848				15741				187			142				
Corycaeus lautus Dana 1848								187			142				

Apéndice 1 (Cont.)															
Especies	9002	9003	9004	9005	9006	2006	9008	9205	9206	9207	9208	9209	9210	9211	9301
Corycaeus limbatus Brady 1883	174														
Corycaeus ovalis Claus 1863			2164												
Corycaeus pacificus Dahl 1912	1394		6870	20239	55230	933	2706	65085	5818	1185		529	524	166	9422
Corycaeus pumilus Dahl 1912						104									
Corycaeus speciosus Dana 1848			240	141	276	1451		1122	1039	91	284	860	262	498	5798
Corycaeus sp.										91					
Farranula carinata Giesbrecht 1891				2249	1381	1451		3865	2078	91	1562	66	7076	332	
Farranula gracilis Dana 1849							601								
Farranula rostrata Claus 1863	871							94							
<i>Farranula</i> spp.	1045		240	7309	5799	207	1002	561	2078	273	710	132	2097	830	2899
Oncaea conifera Giesbrecht 1891									208		568		655		2174
Oncaea media Giesbrecht 1891	1220			1265	1381		802	561	831	91	142		131	830	
Oncaea mediterranea Claus 1863			240	141		3456				2279	568	662	393	498	5074
Oncaea venusta Philipi 1843	348							1122							
Sapphirina auronitens Claus 1863												132			
Sapphirina gemma Dana 1849					828					91	426	132			
Sapphirina nigromaculata Claus 1863	523			141	4142	933		187	390			265	131		4349
Sapphirina ovolanceolata Dana 1849					276										
<i>Sapphirina scarlata</i> Giesbrecht 1892					1381	726		468	130		284	265	131	2325	
Sapphirina sp.												99			

) her sher) enodado	cohebon			ALL COLOR		111n-000			
Especies	9004	9005	9006	9007	9008	9205	9206	9207	9208	9209	9210	9211
Orden Calanoida												
Acartia clausi Giesbrecht 1892			241									
Acartia danae	236	145	965	411		110	1190	677	619	860	327	
Acartia lilljeborgi					208	110	149					
Acartia negligens		290									218	
Acartia tonsa	236											
Acrocalanus andersoni		724		616								
Acrocalanus longicornis	236	869	12349							728	327	
Acrocalanus monachus	1884											
Calanus pacificus			1286									
Calocalanus pavo			241							132		
Calocalanus styliremis		290		308								
Candacia catula								76				1660
Candacia curta		290	2653	411			1636				546	
Candacia truncata					208	220	446		170	529	546	1660
Canthocalanus pauper	2355	2896		821	7221	110	1338	774		662	2928	184
Centropages elongatus												184
Centropages furcatus		3765	9326	2361	4499	549	595	290	510	3243	546	
Centropages gracilis			482									
Clausocalanus arcuicornis		145	241			1977	595	290	340	463		
Clausocalanus furcatus		290	241	103	104	220		76		860	109	
Eucalanus mucronatus		1303	16642	205	208	2417		290	340	3243	1855	

Apéndice 2. Abundancia (ind/1000 m³) por especies de copépodos (copepoditos y adultos) recolectados con la red de 500 µm de tamaño de

263

Apéndice 1 (Cont.)												
Especies	9004	9005	9006	9007	9008	9205	9206	9207	9208	9209	9210	9211
Eucalanus pileatus	707		3618	205		769	2528		1189	4169	1309	3505
Eucalanus sewelli		290	3859	1129		1208	1784	387		66	655	
Eucalanus subtenuis	942	5937	2412	103		2637	595	290		116	436	369
Euchaeta marina		434	482				149					
Euchaeta wolfendeni				719					170	397	327	1660
Labidocera acuta			2171	103	5666	8716	595			1125	764	
Labidocera acutifrons		145				6408		677				
Labidocera diandra					104	110						
Labidocera sp.		145	1929	103	104							
Nannocalanus minor	32970	6250	34730	15448	312	4358	53532	2709	340	99	327	
Neocalanus gracilis Dana 1849	1178											
Paracalanus aculeatus		1303		308						199		
Paracalanus parvus											109	
Pleuromamma gracilis								76				
Pontellina plumata		724				110					218	184
Pontellopsis occidentalis			965			110	149					
Rhincalanus nasutus	1413		724			110					109	
Scolecithrix danae		724	12734	719		1868	14572	6434	170	397	327	2029
Temora discaudata	10550	13176	23797	821	2604	3589	3569	290	2208	4169	1964	2582
Undinula darwini		579		1848		3186	149					
Undinula vulgaris		434	482	4024	13332	5076	7138	6095	11776	3397	11457	6779
Orden Cyclopoida												
Oithona plumifera	8792	23312	6753	4455	208	686	2230	18962	5435	7875	5601	
Oithona setigera						549						

Ciencias Marinas, Vol. 25, No. 2, 1999

Apéndice 1 (Cont.)												
Especies	9004	9005	9006	7006	9008	9205	9206	9207	9208	9209	9210	9211
Orden Poecilostomatoida												
Copilia mirabilis	236	1738	3135	513		439	149			397	109	1107
Corycaeus amazonicus		290										
Corycaeus catus		434				220						
Corycaeus clausi			2171	719		439	149			132		
Corycaeus dubius								193				
Corycaeus limbatus					104	439						
Corycaeus pacificus		1014	2412	103			743					
Corycaeus speciosus	236	434			417	549	149	193	340	596	109	738
Corycaeus sp.										99		
Farranula carinata										132		
Farranula gracilis			482				149					
Farranula sp.										99		
Oncaea conifera								76				
Oncaea mediterranea				205				193				
Sapphirina angusta Dana 1849			241									
Sapphirina gemma										99		
Sapphirina intestinata Giesbrecht 1891			1447									
Sapphirina nigromaculata		145	965	924		1428	297	76		99		
Sapphirina ovolanceolata			742									
Sapphirina scarlata			1206							99		4058