Effect of depth gradient and temperature on Zostera marina vegetative and reproductive phenology in the first year of the 1997–1998 El Niño

Main Article Content

Alf Enrique Meling-López
https://orcid.org/0000-0002-8737-7649
Silvia Emilia Ibarra-Obando
Horacio de la Cueva
https://orcid.org/0000-0002-5280-6458
Pedro Ortega-Romero
Adriana Leticia Navarro-Verdugo

Abstract

Does Zostera marina exhibit phenotypic plasticity, maximizing fitness in traits responding to environmental factors, i.e., depth and temperature? We compared the vegetative and sexual phenology and reproductive effort of Z. marina by analyzing vegetative and reproductive shoot density, biomass, and reproductive stages to determine structural features of vegetative and reproductive shoots from subtidal and intertidal environments in San Quintín Bay, Baja California, a year before and after the 1997–1998 El Niño/Southern Oscillation (ENSO). We found significant differences in vegetative and reproductive biomass between intertidal and subtidal environments driven by temperature differences between ENSO and non-ENSO years. Subtidal plants had lower density of long reproductive shoots and a shorter reproductive cycle. Seed release occurred from May to October in the subtidal environment, and from May to November in the intertidal environment. Maximal recorded values were 219.5 (±45.8) seeds per reproductive shoot in the subtidal environment and 151.3 (±21.5) in the intertidal environment. We observed higher sexual activity and lower vegetative biomass in the intertidal environment, the most stressful environment. Both vegetative and reproductive biomass were affected by the increase in temperature during ENSO, but vegetative and reproductive shoot densities were not affected.

Downloads

Download data is not yet available.

Article Details

How to Cite
Meling-López, A. E., Ibarra-Obando, S. E., de la Cueva, H., Ortega-Romero, P., & Navarro-Verdugo, A. L. (2021). Effect of depth gradient and temperature on Zostera marina vegetative and reproductive phenology in the first year of the 1997–1998 El Niño . Ciencias Marinas, 47(1), 1–15. https://doi.org/10.7773/cm.v47i1.3101 (Original work published March 5, 2021)
Section
Articles

Metrics

References

Bertelli CM, Unsworth RKF. 2018. Light stress responses by the eelgrass, Zostera marina (L). Front Environ Sci. 6:39.

https://doi.org/10.3389/fenvs.2018.00039

Blok SE, Olesen B, Krause-Jensen D. 2018. Life history events of eelgrass Zostera marina L. populations across gradients of latitude and temperature. Mar Ecol Prog Ser. 590:79–93.

https://doi.org/10.3354/meps12479

Cabaço S, Santos R. 2012. Seagrass reproductive effort as an ecological indicator of disturbance. Ecol Indic. 23:116–122.

https://doi.org/10.1016/j.ecolind.2012.03.022

Cabello-Pasini A, Lara-Turrent C, Zimmerman RC. 2002. Effect of storms on photosynthesis, carbohydrate content and survival of eelgrass populations from a coastal lagoon and the adjacent open ocean. Aquat Bot. 74(2):149–164.

https://doi.org/10.1016/S0304-3770(02)00076-1

Cabello-Pasini A, Muñiz-Salazar R, Ward DH. 2003. Annual variations of biomass and photosynthesis in Zostera marina at its southern end of distribution in the North Pacific. Aquat Bot. 76(1):31–47.

https://doi.org/10.1016/S0304-3770(03)00012-3

Cadenasso ML, Pickett STA, Weathers KC, Jones CG. 2003. A framework for a theory of ecological boundaries. BioScience. 53(8):750–758

https://doi.org/10.1641/0006-3568(2003)053[0750:AFFATO]2.0 .CO;2

[CICESE] Centro de Investigación Científica y de Educación Superior de Ensenada. 2019. Estaciones Mareográficas y Meteorológicas Costeras. Ensenada (Baja California, Mexico): Laboratorio del Nivel del Mar de CICESE; [accessed 2019 March] http://redmar.cicese.mx/emmc/webm/emmc.php?nvar=met&nsta=SNQN&nday=2&R=1

Echavarria-Heras HA, Solana-Arellano E, Franco-Vizcaíno E. 2006. The role of increased sea surface temperature on eelgrass leaf dynamics: onset of El Niño as a proxy for global climate change in San Quintín Bay, Baja California. Bull Southern California Acad Sci. 105(3):113–127.

https://doi.org/10.3160/0038-3872(2006)105[113:TROISS]2.0.CO;2

Freitas-Coelho F, Deboni L, Santos-Lopes F. 2005. Density-dependent reproductive and vegetative allocation in the aquatic plant Pistia stratiotes (Araceae). Rev Biol Trop. 53(3–4):369–376.

https://doi.org/10.15517/rbt.v53i3-4.14599

Hadany L, Otto SP. 2009. Condition‐dependent sex and the rate of adaptation. Am Nat. 174(S1):S71–S78.

https://doi.org/10.1086/599086

Hammer KJ, Borum J, Hasler-Sheetal H, Shields EC, Sand-Jensen K, Moore KA. 2018. High temperatures cause reduced growth, plant death and metabolic changes in eelgrass Zostera marina. Mar Ecol Prog Ser. 604:121–132.

https://doi.org/10.3354/meps12740

Hampe A, Petit RJ. 2005. Conserving biodiversity under climate change: the rear edge matters. Ecol Lett. 8(5):461–467.

https://doi.org/10.1111/j.1461-0248.2005.00739.x

Henderson J, Hacker SD. 2015. Buried alive: an invasive seagrass (Zostera japonica) changes its reproductive allocation in response to sediment disturbance. Mar Ecol Prog Ser. 532:123–136. https://doi.org/10.3354/meps11335

Hernández-Carmona G, Riosmena-Rodríguez R, Serviere-Zaragoza E, Ponce-Díaz G. 2011. Effect of nutrient availability on understory algae during El Niño Southern Oscillation (ENSO) conditions in Central Pacific Baja California. J Appl Phycol. 23(3):635–642.

https://doi.org/10.1007/s10811-011-9656-5

Ibarra-Obando SE, Boudouresque CF, Roux M. 1997. Leaf dynamics and production of a Zostera marina bed near its southern distributional limit. Aquat Bot. 58(2):99–112.

https://doi.org/10.1016/S0304-3770(97)00020-X

Johnson MR, Williams SL, Lieberman CH, Solbak A. 2003. Changes in the abundance of the seagrasses Zostera marina L. (eelgrass) and Ruppia maritima L. (widgeongrass) in San Diego, California, following an El Niño Event. Estuaries. 26(1):106–115.

https://doi.org/10.1007/BF02691698

Kaul V. 2016. Resource allocation in angiosperms. The International Journal of Plant Reproductive Biology. 8(2):166–172.

Klinkhamer PGL, de Jong TJ, Meelis E. 1990. How to test for proportionality in the reproductive effort of plants. Am Nat. 135(2):291–300.

https://doi.org/10.1086/285045

Kumar A, Wang W, Hoerling MP, Leetmaa A, Ji M. 2001. The sustained North American warming of 1997 and 1998. J Clim. 14(3):345–353.

https://doi.org/10.1175/1520-0442(2001)0142.0.CO;2

Lee SY, Kim JB, Lee SM. 2006. Temporal dynamics of subtidal Zostera marina and intertidal Zostera japonica on the southern coast of Korea. Mar Ecol. 27(2):133–144.

https://doi.org/10.1111/j.1439-0485.2006.00089.x

Lee SY, Lee SM, Choi CI. 2005. Phenology and reproductive effort of two Zostera marina L. populations on the southern coast of Korea. Ocean Polar Res. 27(1):67–74.

https://doi.org/10.4217/opr.2005.27.1.067

Nielsen SL, Sand-Jensen K, Borum J, Geertz-Hansen O. 2002. Depth colonization of eelgrass (Zostera marina) and macroalgae as determined by water transparency in Danish coastal water. Estuaries. 25(5):1025–1032.

https://doi.org/10.1007/BF02691349

Olesen B, Sand-Jensen K. 1994. Biomass-density patterns in the temperate seagrass Zostera marina. Mar Ecol Prog Ser. 109:283–291.

https://doi.org/10.3354/meps109283

Phillips RC, McMillan C, Bridges KW. 1983. Phenology of eelgrass, Zostera marina L., along latitudinal gradients in North America. Aquat Bot. 15:145–156.

https://doi.org/10.1016/0304-3770(83)90025-6

Poumian-Tapia M, Ibarra-Obando SE. 1999. Demography and biomass of the seagrass Zostera marina in a Mexican coastal lagoon. Estuaries. 22(4):837–847.

https://doi.org/10.2307/1353065

Qin LZ, Li WT, Zhang XM, Nie M, Li Y. 2014. Sexual reproduction and seed dispersal pattern of annual and perennial Zostera marina in a heterogeneous habitat. Wetl Ecol Manag. 22(6):671– 682.

https://doi.org/10.1007/s11273-014-9363-5

Riosmena-Rodríguez R, Muñiz-Salazar R, López-Calderón J, Torre-Cosio J, Meling A, Talbo SL, Sage GK, Ward DH, Cabello-Pasini A. 2013. Conservation status of Zostera marina populations at Mexican Pacific. Chapter 2. In: Daniels JA (ed.), Advances in Environmental Research. Vol. 27. Florida (USA): Nova Science Publishers. p. 35–63. Sexton JP, McIntyre PJ, Angert AL, Rice KJ. 2009. Evolution and ecology of species range limits. Annu Rev Ecol Evol Syst. 40(1):415–436.

https://doi.org/10.1146/annurev.ecolsys.110308.120317

Shields EC, Moore KA, Parrish DB. 2018. Adaptations by Zostera marina dominated seagrass meadows in response to water quality and climate forcing. Diversity. 10(4):125.

https://doi.org/10.3390/d10040125

Solana-Arellano E, Echavarria-Heras H, Franco-Vizcaíno E. 2008. An economical non-destructive method for estimating eelgrass, Zostera marina (Potamogetonaceae) leaf growth rates: formal development and use in northwestern Baja California. Rev Biol Trop. 56(3):1003–1013.

https://doi.org/10.15517/rbt.v56i3.5688

Trenberth KE, Caron JM, Stepaniak DP, Worley S. 2002. Evolution of El Niño–Southern Oscillation and global atmospheric surface temperatures. J Geophys Res. 107(D8):AAC 5-1–AAC 5-17.

https://doi.org/10.1029/2000JD000298

Zar JH. 2010. Biostatistical Analysis. 5th ed. New Jersey (USA): Pearson Prentice Hall. 964 p.