Seasonal variability in copepod biomass in a cyclonic eddy in the Bay of La Paz, southern Gulf of California, Mexico

Main Article Content

Franco Antonio Rocha-Díaz
https://orcid.org/0000-0001-8275-8082
María Adela Monreal-Gómez
https://orcid.org/0000-0003-3736-6447
Erik Coria-Monter
https://orcid.org/0000-0001-8505-7679
David Alberto Salas-de-León
https://orcid.org/0000-0003-1931-9110
Elizabeth Durán-Campos
https://orcid.org/0000-0002-8730-3439

Abstract

As one of the main groups comprising marine zooplankton, copepods play an important role due to their position in the trophic web. We assessed the copepod biomass in a cyclonic eddy during 2 contrasting seasons in the Bay of La Paz, southern Gulf of California, which is characterized by high biological productivity. Two oceanographic expeditions took place in the winter of 2006 and the summer of 2009; a CTD probe was used to determine the physical structure of the water column, and oblique zooplankton hauls collected zooplankton samples. Satellite data were used to visualize the chlorophyll a (Chla) distribution patterns. The results showed a well-defined cyclonic eddy in both seasons, with a diameter of ~25 km and geostrophic velocities >50 cm·s–1 in its periphery. At the edges of the eddy, Chla was high, reaching ~3 mg·m–3 in winter. The maximum calanoid copepod biomass occurred in winter, reaching 6.6 mg·100 m–3 in the western bay close to the coast; moreover, their distribution corresponded well with the Chla and circulation patterns, forming a belt shape following the periphery of the eddy, with a second peak close to the connection with the gulf. The mean values of copepod biomass exhibited a pattern with alternating calanoids-cyclopoids between winter and summer within the cyclonic eddy, with calanoid biomass higher than cyclopoid biomass in winter, which was the opposite of summer. The results highlight the impacts of the eddy on the planktonic ecosystem through its influence on the hydrographic conditions in the water column. Other factors, such as ecological interactions, population dynamics, and feeding habits, may also play a role. Feeding behavior is affected by the high concentrations of Chla, which represent a source of food for copepods observed around the eddy.

Downloads

Download data is not yet available.

Article Details

How to Cite
Rocha-Díaz, F. A., Monreal-Gómez, M. A., Coria-Monter, E., Salas-de-León, D. A., & Durán-Campos, E. (2022). Seasonal variability in copepod biomass in a cyclonic eddy in the Bay of La Paz, southern Gulf of California, Mexico. Ciencias Marinas, 48(1). https://doi.org/10.7773/cm.y2022.3167
Section
Research Article

Metrics

References

Álvarez-Borrego S. 2012. Phytoplankton biomass and production in the Gulf of California: a review. Bot Mar. 55(2):119–128. https://doi.org/10.1515/bot.2011.105 DOI: https://doi.org/10.1515/bot.2011.105

Arreguín-Sánchez F, del Monte-Luna P, Zetina-Rejón MJ, Albañez- Lucero MO. 2017. The Gulf of California large marine ecosystem: Fisheries and other natural resources. Environ Dev. 22:71–77. https://doi.org/10.1016/j.envdev.2017.03.002 DOI: https://doi.org/10.1016/j.envdev.2017.03.002

Ayón P, Criales-Hernandez MI, Schwamborn R, Hirche H-J. 2008. Zooplankton research off Peru: A review. Progr Oceanogr. 79(2–4):238–255. https://doi.org/10.1016/j.pocean.2008.10.020 DOI: https://doi.org/10.1016/j.pocean.2008.10.020

Boltovskoy D. 1999. South Atlantic zooplankton. Mar del Plata (Argentina): Publicaciones especiales del INIDEP. 1076 p.

Brierley AS. 2017. Plankton. Curr Biol. 27(11):R478–R483. https://doi.org/10.1016/j.cub.2017.02.045 DOI: https://doi.org/10.1016/j.cub.2017.02.045

Coria-Monter E, Monreal-Gómez MA, Salas de León DA, Aldeco- Ramírez J, Merino-Ibarra M. 2014. Differential distribution of diatoms and dinoflagellates in a cyclonic eddy confined in the Bay of La Paz, Gulf of California. J Geophys Res: Oceans. 119(9):6258–6268. https://doi.org/10.1002/2014JC009916 DOI: https://doi.org/10.1002/2014JC009916

Coria-Monter E, Monreal-Gómez MA, Salas de León DA, Durán- Campos E. 2020. Zooplankton abundance during summer in the Bay of La Paz (southwestern Gulf of California, Mexico). Lat Am J Aquat Res. 48(5):794–805. http://doi.org/10.3856/vol48-issue5-fulltext-2515 DOI: https://doi.org/10.3856/vol48-issue5-fulltext-2515

Coria-Monter E, Monreal-Gómez MA, Salas de León DA, Durán- Campos E, Merino-Ibarra M. 2017. Wind driven nutrient and subsurface chlorophyll-a enhancement in the Bay of La Paz, Gulf of California. Estuar Coast Shelf Sci. 196:290–300. https://doi.org/10.1016/j.ecss.2017.07.010 DOI: https://doi.org/10.1016/j.ecss.2017.07.010

Cruz-Hernández J, Sánchez-Velasco L, Godínez VM, Beier E, Palomares-García JR, Barton ED, Santamaría-del-Ángel E. 2018. Vertical distribution of calanoid copepods in a mature cyclonic eddy in the Gulf of California. Crustaceana. 91(1):63– 84. https://doi.org/10.1163/15685403-00003751 DOI: https://doi.org/10.1163/15685403-00003751

Durán-Campos E, Monreal-Gómez MA, Salas de León DA, Coria- Monter E. 2019. Zooplankton functional groups in a dipole eddy in a coastal region of the southern Gulf of California. Reg Stud Mar Sci. 28:100588. https://doi.org/10.1016/j.rsma.2019.100588 DOI: https://doi.org/10.1016/j.rsma.2019.100588

Durán-Campos E, Monreal-Gómez MA, Salas de León DA, Coria-Monter E. 2020. Field and satellite observations on the seasonal variability of the surface chlorophyll-a in the Bay of La Paz, Gulf of California, Mexico. Int J Oceans Oceanogr. 14(1):157–167. https://doi.org/10.37622/IJOO/14.1.2020.157-167 DOI: https://doi.org/10.37622/IJOO/14.1.2020.157-167

Durán-Campos E, Salas de León DA, Monreal-Gómez MA, Aldeco-Ramírez J, Coria-Monter E. 2015. Differential zooplankton aggregation due to relative vorticity in a semienclosed bay. Estuar Coast Shelf Sci. 164:10–18. https://doi.org/10.1016/j.ecss.2015.06.030. DOI: https://doi.org/10.1016/j.ecss.2015.06.030

Eden BR, Steinberg DK, Goldthwait SA, McGillicuddy Jr DJ. 2009. Zooplankton community structure in a cyclonic and modewater eddy in the Sargasso Sea. Deep-Sea Res Pt I. 56(10):1757–1776. https://doi.org/10.1016/j.dsr.2009.05.005 DOI: https://doi.org/10.1016/j.dsr.2009.05.005

Estrada R, Harvey M, Gosselin M, Starr M, Galbraith PS, Straneo F. 2012. Late-summer zooplankton community structure, abundance, and distribution in the Hudson Bay system (Canada) and their relationships with environmental conditions, 2003– 2006. Prog Oceanogr. 101(1):121–145. https://doi.org/10.1016/j.pocean.2012.02.003 DOI: https://doi.org/10.1016/j.pocean.2012.02.003

Gaube P, McGillicuddy Jr DJ, Moulin AJ. 2018. Mesoscale eddies modulate mixed layer depth globally. Geophys Res Lett. 46:1505–1512. https://doi.org/10.1029/2018GL080006 DOI: https://doi.org/10.1029/2018GL080006

Hernández-León S, Almeida C, Gómez M, Torres S, Montero I, Portillo-Hahnefeld A. 2001. Zooplankton biomass and indices of feeding and metabolism in island-generated eddies around Gran Canaria. J Mar Syst. 30:51–66. https://doi.org/10.1016/S0924-7963(01)00037-9 DOI: https://doi.org/10.1016/S0924-7963(01)00037-9

[IOC] Intergovernmental Oceanographic Commission, [SCOR] Scientific Committee on Oceanic Research, [IAPSO] International Association for the Physical Sciences of the Oceans. 2010. The international thermodynamic equation of seawater–2010. Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Comission, Manual and guides, No. 56: Paris (France): UNESCO. http:// www.teos-10.org/pubs/TEOS-10_Manual.pdf

Jagadeesan L, Srinivas TNR, Surendra A, Sampath Kumar G, Aswindev MP, Ignatious J. 2020. Copepods size structure in various phases of a cold-core eddy - Normalised Abundance Size Spectra (NASS) approach. Cont Shelf Res. 206:104197. https://doi.org/10.1016/j.csr.2020.104197 DOI: https://doi.org/10.1016/j.csr.2020.104197

Kiørboe T. 2011. What makes pelagic copepods so successful? J Plankton Res. 33(5):677–685. https://doi.org/10.1093/plankt/fbq159 DOI: https://doi.org/10.1093/plankt/fbq159

Lee RE. 2008. Phycology. 4th ed. Cambridge (UK): Cambridge University Press. 534 p. Mahadevan A. 2016. The impact of submesoscale physics on primary productivity of plankton. Annu Rev Mar Sci. 8:161–184. http://doi.org/10.1146/annurev-marine-010814-015912 DOI: https://doi.org/10.1146/annurev-marine-010814-015912

Mann KH, Lazier JRN. 2006. Dynamics of marine ecosystems: Biological-physical interactions in the oceans. 3rd ed. Boston (USA): Blackwell Scientific Publications. 496 p.

Martínez-López A, Álvarez-Gómez IG, Durazo R. 2012. Climate variability and silicoflagellate fluxes in Alfonso Basin (southern Gulf of California). Bot Mar. 55:177–185. https://doi.org/10.1515/bot-2012-0101 DOI: https://doi.org/10.1515/bot-2012-0101

Mauchline J, Blaxter JHS, Southward AJ, Tyler PA. 1998. The Biology of Calanoid Copepods. 1st ed. San Diego (California, USA): Academic Press. 710 p.

McGillicuddy Jr DJ. 2016. Mechanisms of physical-biologicalbiogeochemical interaction at the oceanic mesoscale. Annu Rev Mar Sci. 8:125–159. https://doi.org/10.1146/annurev-marine-010814-015606 DOI: https://doi.org/10.1146/annurev-marine-010814-015606

Melão MGG, Rocha O. 2004. Life history, biomass and production of two planktonic cyclopoid copepods in a shallow subtropical reservoir. J Plankton Res. 26(8):909–923. https://doi.org/10.1093/plankt/fbh080 DOI: https://doi.org/10.1093/plankt/fbh080

Molinero JC, Ibanez F, Souissi S, Bosc E, Nival P. 2008. Surface patterns of zooplankton spatial variability detected by high frequency sampling in the NW Mediterranean. Role of density fronts. J Mar Sys. 69(3–4):271–282. https://doi.org/10.1016/j.jmarsys.2005.11.023 DOI: https://doi.org/10.1016/j.jmarsys.2005.11.023

Monreal-Gómez MA, Molina-Cruz A, Salas de León DA. 2001. Water masses and cyclonic circulation in Bay of La Paz, Gulf of California, during June 1998. J Mar Sys. 30(3–4):305–315. https://doi.org/10.1016/S0924-7963(01)00064-1 DOI: https://doi.org/10.1016/S0924-7963(01)00064-1

Morales CE, Loreto Torreblanca M, Hormazabal S, Correa- Martínez M, Nuñez S, Hidalgo P. 2010. Mesoscale structure of copepod assemblages in the coastal transition zone and oceanic waters off central-southern Chile. Prog Oceanogr. 84(3–4):158– 173. https://doi.org/10.1016/j.pocean.2009.12.001 DOI: https://doi.org/10.1016/j.pocean.2009.12.001

Noyon M, Morris T, Walker D, Huggett J. 2019. Plankton distribution within a young cyclonic eddy off south-western Madagascar. Deep-Sea Res Pt II. 166:141–150. https://doi.org/10.1016/j.dsr2.2018.11.001 DOI: https://doi.org/10.1016/j.dsr2.2018.11.001

Ohtsuka S, Bottger-Schnack R, Okada M, Onbé T. 1996. In situ feeding habits of Oncaea (Copepoda: Poecilostomatoida) from the upper 250 m of the central Red Sea, with special reference to consumption of appendicularian houses. Bull Plankton Soc Jpn. 43(2):89–105.

Pond S, Pickard GL. 1995. Introductory Dynamical Oceanography. 2nd ed. Oxford: Butterworth-Heinemann. 329 p. Richardson AJ. 2008. In hot water: zooplankton and climate change. ICES J Mar Sci. 65(3):279–295. https://doi.org/10.1093/icesjms/fsn028 DOI: https://doi.org/10.1093/icesjms/fsn028

Salas-Monreal D, Salas de León DA, Monreal-Gomez MA, Riverón-Enzástiga ML, Mojica-Ramírez E. 2012. Hydraulic jump in the Gulf of California. Open J Mar Sci. 2:141–149. http://dx.doi.org/10.4236/ojms.2012.24017 DOI: https://doi.org/10.4236/ojms.2012.24017

Sánchez-Mejía JM, Monreal-Gómez MA, Durán-Campos E, Salas de León DA, Coria-Monter E, Contreras-Simuta MG, Merino- Ibarra M. 2020. Impact of a Mesoscale Cyclonic Eddy on the Phytoplankton Biomass of Bay of La Paz in the Southern Gulf of California. Pac Sci. 74(4):331–344. https://doi.org/10.2984/74.4.2 DOI: https://doi.org/10.2984/74.4.2

Santhanam P, Pachiappan P, Begum A. 2019. A method of collection, preservation and identification of marine zooplankton. In: Santhanam P, Begum A, Pachiappan P (eds.), Basic and Applied Zooplankton Biology. Singapore: Springer Nature Singapore Pte Ltd. 442 p. https://doi.org/10.1007/978-981-10-7953-5_1 DOI: https://doi.org/10.1007/978-981-10-7953-5

Tartarotti B, Saul N, Chakrabarti S, Trattner F, Steinberg CEW, Sommaruga R. 2014. UV-induced DNA damage in Cyclops abyssorum tatricus populations from clear and turbid alpine lakes. J Plankton Res. 36(2):557–566. DOI: https://doi.org/10.1093/plankt/fbt109

Vera-Mendoza R, Salas de León DA. 2014. Effect of environmental factors on zooplankton abundance and distribution in river discharge influence areas in the southern Gulf of Mexico. In: Amezcua F, Bellgraph B (eds.), Fisheries management of Mexican and Central American Estuaries, Estuaries of the world. 1st ed. Netherlands: Springer. p. 93–112. DOI: https://doi.org/10.1007/978-94-017-8917-2_7

Webster CN, Lucas CH. 2012. The effects of food and temperature on settlement of Aurelia aurita planula larvae and subsequent somatic growth. J Exp Mar Biol Ecol. 436–437:50–55. https://doi.org/10.1016/j.jembe.2012.08.014 DOI: https://doi.org/10.1016/j.jembe.2012.08.014

Yebra L, Hernández-León S, Almeida C, Bécognée P, Rodríguez JM, 2004. The effect of upwelling filaments and island-induced eddies on indices of feeding, respiration and growth in copepods. Prog Oceanogr. 62:151–169. DOI: https://doi.org/10.1016/j.pocean.2004.07.008

Most read articles by the same author(s)