Seasonal and interannual variability in chlorophyll concentration and primary productivity off Campeche, Gulf of Mexico

Main Article Content

Santiago J Quetz-Que
https://orcid.org/0000-0002-0909-9866
Saúl Álvarez-Borrego
https://orcid.org/0000-0002-7586-8678
José Rubén Lara-Lara
https://orcid.org/0000-0001-6329-5668
Ma. Elena Solana-Arellanos
https://orcid.org/0000-0001-8299-7753
Alejandro Parés-Sierrra
https://orcid.org/0000-0002-0658-2094

Abstract

The objective of this work was to characterize the spatiotemporal variability in satellite-derived chlorophyll concentration (Chlsat), primary productivity (PP), sea surface temperature (SST), and sea surface height (SSH) in the Campeche Bank from July 2002 to December 2018. Monthly composites of Chlsat and SST (MODIS-Aqua sensor) and SSH (COPERNICUS) were downloaded. PP compositions were downloaded from the Oregon State University web page. Four transects running perpendicular (T1 to T4) and 1 parallel (T5) to the coast of Campeche were studied. Time series and Hovmöller diagrams were constructed to study the spatial and temporal variations. The Chlsat in T1 to T4 showed a clear separation between an inner zone (0–60 km) and an outer zone (60–200 km). The inner neritic zone showed maximum Chlsat (>2.5 mg·m–3) and PP (>2 g C·m–2·d–1) values in the rainy season and minimum values in the dry season (<2 mg·m–3 and <2 g C·m–2·d–1, respectively) because freshwater input in the inner zone provides nutrients for phytoplankton growth. The outer neritic zone showed the highest Chlsat (>0.6 mg·m–3) and PP (>0.7 g C·m–2·d–1) values during cold fronts and the lowest during the dry season (<0.3 mg·m–3 and <0.4 g C·m–2·d–1) because cold fronts mix the water column and thus carry nutrients into the euphotic zone. SST showed maximum values (>30 ºC) during the rainy season and minimum values (<22 º) during cold fronts; maximum SSH (>0.40 m) occurred during cold fronts, and minimum SSH (<0.25 m) occurred during the dry season. 

Downloads

Download data is not yet available.

Article Details

How to Cite
Quetz-Que, S. J., Álvarez-Borrego, S., Lara-Lara, J. R., Solana-Arellanos, M. E., & Parés-Sierrra, A. (2022). Seasonal and interannual variability in chlorophyll concentration and primary productivity off Campeche, Gulf of Mexico. Ciencias Marinas, 48(1). https://doi.org/10.7773/cm.y2022.3168
Section
Research Article

Metrics

References

Álvarez-Góngora C, Herrera-Silveira JA. 2006. Variations of phytoplankton community structure related to water quality trends in a tropical karstic coastal zone. Mar Pollut Bull. 52(1):48–60.

http://dx.doi.org/10.1016/j.marpolbul.2005.08.006 DOI: https://doi.org/10.1016/j.marpolbul.2005.08.006

Arreola-Lizárraga JA, Padilla-Arredondo G, Ruiz-Ruiz TM, Cruz García LM, Méndez-Rodriguez LC, Hérnandez-Almaraz P, Vargas-González HH. 2018. Estuaries and coastal lagoons of Mexico: Challenges for science, management, and conservation. In: Ortega-Rubio A (ed.), Mexican Natural Resources Management and Biodiversity Conservation. Switzerland: Springer International Publishing AG. p. 251–283. DOI: https://doi.org/10.1007/978-3-319-90584-6_12

Burnett WC, Bokuniewicz H, Huettel M, Moore WS, Taniguchi M. 2003. Groundwater and pore water inputs to the coastal zone. Biogeochemistry. 66(1–2):3–33.

https://doi.org/10.1023/B:BIOG.0000006066.21240.53 DOI: https://doi.org/10.1023/B:BIOG.0000006066.21240.53

Carranza-Edwards A, Rosales-Hoz L, Monreal-Gómez A. 1993. Suspended sediments in the southeastern Gulf of Mexico. Mar Geol. 112(1–4):257–269.

https://doi.org/10.1016/0025-3227(93)90172-r DOI: https://doi.org/10.1016/0025-3227(93)90172-R

Gaxiola-Castro G, Cepeda-Morales JCA, Nájera-Martínez S, Espinosa-Carreón TL, De la Cruz-Orozco ME, Sosa-Avalos R, Aguirre-Hernández E, Cantú-Ontiveros JP. 2010. Biomasa y producción de fitoplancton. In: Gaxiola-Castro G, Durazo R (eds.), Dinámica del ecosistema pelágico frente a Baja California, 1997-2007. Diez años de investigaciones mexicanas de la Corriente de California. Mexico City: SEMARNAT. p. 59–85.

Hernández-Arana HA, Rowden AA, Attrill MJ, Warwick RM, Gold-Bouchot G. 2003. Large-scale environmental influences on the benthic macroinfauna of the southern Gulf of Mexico. Estuarine, Coastal Shelf Sci. 58(4):825–841.

https://doi.org/10.1016/s0272-7714(03)00188-4 DOI: https://doi.org/10.1016/S0272-7714(03)00188-4

Jeffreys SH. 1967. Theory of probability. 3rd ed. Oxford (United Kingdom): Clarendon Press. 459 p. Jennerjahn TC, Ittekkot V. 2002. Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften. 89(1):23–30.

https://doi.org/10.1007/s00114-001-0283-x DOI: https://doi.org/10.1007/s00114-001-0283-x

Johannes RE. 1980. The ecological significance of the submarine discharge of groundwater. Mar Ecol Prog Ser. 3(4):365–373. DOI: https://doi.org/10.3354/meps003365

Kirk JTO. 1994. Light and photosynthesis in aquatic ecosystems. Cambridge (United Kingdom): Cambridge University Press. 491 p. DOI: https://doi.org/10.1017/CBO9780511623370

Liceaga S, Luna R. 1999. Spatio-temporal variation of phytoplankton on the continental margin in the SW Gulf of Mexico. Rev Soc Mex Hist Nat. 49:83–100.

Lohrenz SE, Fahnenstiel GL, Redalje DG, Lang GA, Chen X, Dagg MJ. 1997. Variations in primary production of northern Gulf of Mexico continental shelf waters linked to nutrient inputs from the Mississippi River. Mar Ecol Prog Ser. 155:45–54.

https://doi.org/10.3354/meps155045 DOI: https://doi.org/10.3354/meps155045

Mann KH, Lazier JRN. 2013. Dynamics of marine ecosystems: biological-physical interactions in the oceans. 3rd ed. Cambridge (United Kingdom): Cambridge University Press. 649 p.

https://doi.org/10.1002/9781118687901 DOI: https://doi.org/10.1002/9781118687901

Manzano-Sarabia MM, Salinas-Zavala CA. 2008. Variabilidad estacional e interanual de la concentración de clorofila a y temperatura superficial del mar en la región occidental del Golfo de México: 1996-2007. Interciencia. 33(9):628–634.

Martínez-López B, Parés Sierra A. 1998. Circulación del Golfo de México inducida por mareas, viento y la corriente de Yucatán = Circulation in the Gulf of Mexico induced by tides, wind and the Yucatan Current. Cienc Mar. 24(1):65–93.

https://doi.org/10.7773/cm.v24i1.740 DOI: https://doi.org/10.7773/cm.v24i1.740

Martínez-López B, Zavala-Hidalgo J. 2009. Seasonal and interannual variability of cross-shelf transports of chlorophyll in the Gulf of Mexico. J Marine Syst. 77(1–2):1–20.

https://doi.org/10.1016/j.jmarsys.2008.10.002 DOI: https://doi.org/10.1016/j.jmarsys.2008.10.002

Mendoza-Vega J, Ku-Quej V. 2010. Medio físico: Clima. In: Villalobos-Zapata GJ Mendoza Vega J (Coord.), La Biodiversidad en Campeche: Estudio de Estado. Mexico: CONABIO, Gobierno del Estado de Campeche, UAC, ECOSUR. p. 16–18.

Merino M. 1997. Upwelling on the Yucatan Shelf: hydrographic evidence. J Marine Syst. 13(1–4):101–121.

https://doi.org/10.1016/S0924-7963(96)00123-6 DOI: https://doi.org/10.1016/S0924-7963(96)00123-6

Morales-Ojeda SM, Herrera-Silveira JA, Montero J. 2010. Terrestrial and oceanic Influence on spatial hydrochemistry and trophic status in subtropical marine near-shore waters. Water Res. 44(20):5949–5964.

https://doi.org/10.1016/j.watres.2010.07.046 DOI: https://doi.org/10.1016/j.watres.2010.07.046

Morey SL, Zavala-Hidalgo J, O’Brien JJ. 2005. The seasonal variability of continental shelf circulation in the northern and western Gulf of Mexico from a high-resolution numerical model. In: Sturges W, Lugo-Fernandez A (eds.), Circulation in the Gulf of Mexico: Observations and Models. Washington (DC): American Geophysical Union. 161:203–218.

https://doi.org/10.1029/161GM16 DOI: https://doi.org/10.1029/161GM16

Muller-Karger FE, Smith JP, Werner S, Chen R, Roffer M, Liu Y, Muhling B, Lindo-Atichati D, Lamkin J, Cerdeira-Estrada, et al. 2015. Natural variability of surface oceanographic conditions in the offshore Gulf of Mexico. Prog Oceanogr. 134:54–76.

https://doi.org/10.1016/j.pocean.2014.12.007 DOI: https://doi.org/10.1016/j.pocean.2014.12.007

Müller‐Karger FE, Walsh JJ, Evans RH, Meyers MB. 1991. On the seasonal phytoplankton concentration and sea surface temperature cycles of the Gulf of Mexico as determined by satellites. J Geophys Res-Oceans. 96(C7):12645–12665.

https://doi.org/10.1029/91JC00787 DOI: https://doi.org/10.1029/91JC00787

Mulligan AE, Charette MA. 2009. Groundwater flow to the coastal ocean. Elements of Physical Oceanography: A Derivative of the Encyclopedia of Ocean Sciences. Amsterdam: Elsevier. p. 465–474. DOI: https://doi.org/10.1016/B978-012374473-9.00645-7

Okolodkov YB. 2003. A review of Russian plankton research in the Gulf of Mexico and the Caribbean Sea in the 1960-1980s. Hidrobiológica. 13(3):207–221.

Pal R, Choudhury AK. 2014. A Brief Introduction to Phytoplankton. In: Pal R, Choudhury AK (eds.), An Introduction to Phytoplankton: Diversity and Ecology. New Delhi (India): Springer. 167 p. DOI: https://doi.org/10.1007/978-81-322-1838-8_1

Rebolledo-Vieyra M. 2010. Medio físico: Hidrología. In: Villalobos-Zapata GJ, Mendoza-Vega J (Coord.), La Biodiversidad en Campeche: Estudio de Estado. Mexico: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. p. 2–7.

Salmerón-García O, Zavala-Hidalgo J, Mateos-Jasso A, Romero-Centeno R. 2011. Regionalization of the Gulf of Mexico from space-time chlorophyll-a concentration variability. Ocean Dynam. 61(4):439–448.

https://doi.org/10.1007/s10236-010-0368-1 DOI: https://doi.org/10.1007/s10236-010-0368-1

Shropshire T, Li Y, He R. 2016. Storm impact on sea surface temperature and chlorophyll a in the Gulf of Mexico and Sargasso Sea based on daily cloud‐free satellite data reconstructions. Geophys Res Lett. 43(23):12199–12207.

https://doi.org/10.1002/2016GL071178 DOI: https://doi.org/10.1002/2016GL071178

Slomp CP, Van Cappellen P. 2004. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J Hydrol. 295(1–4): 64–86.

https://doi.org/10.1016/j.jhydrol.2004.02.018 DOI: https://doi.org/10.1016/j.jhydrol.2004.02.018

Tamisiea ME, Hughes CW, Williams SDP, Bingley RM. 2014. Sea level: measuring the bounding surfaces of the ocean. Philos T Roy Soc A. 372(2025):20130336.

https://doi.org/10.1098/rsta.2013.0336 DOI: https://doi.org/10.1098/rsta.2013.0336

Troccoli-Ghinaglia L, Herrera-Silveira JA, Comín FA. 2004. Structural variations of phytoplankton in the coastal areas of Yucatán, México. Hydrobiologia. 519(1–3):85–102.

https://doi.org/10.1023/b:hydr.0000026487.78497.b6 DOI: https://doi.org/10.1023/B:HYDR.0000026487.78497.b6

Valle-Levinson A, Mariño-Tapia I, Enriquez C, Waterhouse AF. 2011. Tidal variability of salinity and velocity fields related to intense point‐source submarine groundwater discharges into the coastal ocean. Limnol Oceanogr. 56(4):1213–1224.

https://doi.org/10.4319/lo.2011.56.4.1213 DOI: https://doi.org/10.4319/lo.2011.56.4.1213

Walker ND, Leben RR, Balasubramanian S. 2005. Hurricane‐ forced upwelling and chlorophyll a enhancement within cold‐ core cyclones in the Gulf of Mexico. Geophys Res Lett. 32(18).

http://dx.doi.org/10.1029/2005GL023716 DOI: https://doi.org/10.1029/2005GL023716

Zavala-Hidalgo J, Gallegos-García A, Martínez-López B, Morey SL, O’Brien JJ. 2006. Seasonal upwelling on the western and southern shelves of the Gulf of Mexico. Ocean dynam. 56(3– 4):333–338.

https://doi.org/10.1007/s10236-006-0072-3 DOI: https://doi.org/10.1007/s10236-006-0072-3

Zavala‐Hidalgo J, Morey SL, O'Brien JJ. 2003. Seasonal circulation on the western shelf of the Gulf of Mexico using a high‐ resolution numerical model. J Geophys Res-Oceans. 108(C12):3389.

http://dx.doi.org/10.1029/2003JC001879 DOI: https://doi.org/10.1029/2003JC001879

Zavala-Hidalgo J, Romero-Centeno R, Mateos-Jasso A, Morey SL, Martinez-Lopez B. 2014. The response of the Gulf of Mexico to wind and heat flux forcing: What has been learned in recent years? Atmósfera. 27(3):317–334.

https://doi.org/10.1016/s0187-6236(14)71119-1 DOI: https://doi.org/10.1016/S0187-6236(14)71119-1