Evaluation of 2 methods of ex situ incubation for sea turtle eggs in terms of nest temperature, hatching success, and hatchling quality

Main Article Content

Diana Rubí Ríos-Huerta
Milagros González-Hernández
Catherine E Hart
Antonio Ramírez-Guillén
Katherine EC Santos

Abstract

At the marine turtle conservation program in Boca de Tomates, Jalisco, Mexico, all nests are relocated to fenced-off beach hatchery or polystyrene boxes due to illegal egg collection, predation, erosion, and high sand temperatures. For both methods we evaluated the following nest viability and hatchling quality parameters: hatching success, nest temperatures, incubation duration, and hatchling quality (locomotor performance, morphometrics, weight, and congenital malformations). Hatching success was significantly higher in the beach hatchery (mean 77.4%, n = 1,368) than in boxes (average 59.91%, n = 1,160) (P < 0.001). The beach hatchery nests hatched in less time (hatchery = 46 d, boxes = 51 d) (P < 0.001) due to the significantly higher mean temperature (hatchery = 32.62 ºC, boxes 30.58 ºC) (P < 0.001). The hatchery was exposed to less temperature variability per day (hatchery = 1.46 ºC, boxes = 2.69 ºC) (P < 0.001). To test hatchling quality, 10 hatchlings were randomly selected from each nest (n = 254). The weight, size, and locomotor performance (righting response and time to crawl 3 m) of these organisms were recorded. Live and dead neonates were carefully inspected for malformations (n = 2,000). No significant difference was found between incubation methods in any hatchling quality parameter (P > 0.050). The malformations at this site have low prevalence (hatchery = 1.35%, boxes = 1.89%) and low intensity index per organism (hatchery = 1.52, boxes = 1.89) compared to other studies and species. This is the first study, to our knowledge, that compares hatchling quality from 2 ex situ incubation methods in a single species (Lepidochelys olivacea), at the same location, and during the same period of time. Carrying out studies such as this one is important, since the quality of hatchlings can contribute to their ability to survive and reproduce in the future.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ríos-Huerta, D. R., González-Hernández, M., Hart, C. E., Ramírez-Guillén, A., & Santos, K. E. (2021). Evaluation of 2 methods of ex situ incubation for sea turtle eggs in terms of nest temperature, hatching success, and hatchling quality. Ciencias Marinas, 47(4), 241–254. https://doi.org/10.7773/cm.v47i4.3225
Section
Articles

Metrics

References

Abd-Mutalib AH, Fadzly N. 2015. Assessing hatchery management as a conservation tool for sea turtles: A case study in Setiu, Terengganu. Ocean Coast Manage. 113:47–53.

https://doi.org/10.1016/j.ocecoaman.2015.05.010

Ackerman RA. 1997. The nest environment and the embryonic development of sea turtles. In: Lutz PL, Musick JA (eds.), The Biology of Sea Turtles. Boca Raton (FL): CRC Press. p. 83–106.

Arzola-González JF. 2007. Humedad y temperatura en nidos naturales y artificiales de tortuga golfina Lepidochelys olivacea (Eschssholtz 1829). Rev Biol Mar Oceanogr. 42(3):377–383.

http://dx.doi.org/10.4067/S0718-19572007000300017

Bárcenas-Ibarra A, de la Cueva H, Rojas-Lleonart I, Abreu-Grobois FA, Lozano-Guzmán RI, Cuevas E, García-Gasca A. 2015. First approximation to congenital malformation rates in embryos and hatchlings of sea turtles. Birth Defects Res A. 103(3):203–224.

https://doi.org/10.1002/bdra.23342

Bárcenas-Ibarra A, Maldonado–Gasca A. 2009. Malformaciones en embriones y neonatos de tortuga golfina (Lepidochelys olivacea) en Nuevo Vallarta, Nayarit, México = Malformations in embryos and neonates of olive ridley sea turtle (Lepidochelys olivacea) in Nuevo Vallarta, Nayarit, Mexico. Vet Méx. 40(4):371–380.

Blanck CE, Sawyer RH. 1981. Hatchery practices in relation to early embryology of the loggerhead sea turtle, Caretta caretta (Linné). J Exp Mar Biol Ecol. 49(2–3):163–177.

https://doi.org/10.1016/0022-0981(81)90068-X

Booth DT. 2006. Influence of incubation temperature on hatchling phenotype in reptiles. Physiol Biochem Zool. 79(2):274–281.

https://doi.org/10.1086/499988

Booth DT, Burgess E, McCosker J, Lanyon JM. 2004. The influence of incubation temperature on post-hatching fitness characteristics of turtles. Int Congr Ser. 1275:226–233.

https://doi.org/10.1016/j.ics.2004.08.057

Booth DT, Evans A. 2011. Warm water and cool nests are best. How global warming might influence hatchling green turtle swimming performance. PLOS ONE. 6(8):e23162.

https://doi.org/10.1371/journal.pone.0023162

Broderick AC, Godley BJ, Reece S, Downie JR. 2000. Incubation periods and sex ratios of green turtles: highly female biased hatchling production in the eastern Mediterranean. Mar Ecol Prog Ser. 202:273–281.

https://doi.org/10.3354/meps202273

Brost B, Witherington B, Meylan A, Leone E, Ehrhart L, Bagley D. 2015. Sea turtle hatchling production from Florida (USA) beaches, 2002-2012, with recommendations for analyzing hatching success. Endanger. Species Res. 27(1):53–68.

https://doi.org/10.3354/esr00653

Camacho-Muñoz P. 2018. Malformaciones congénitas en embriones y neonatos de Tortuga golfina (Lepidochelys olivacea), en playa boca de tomates, Puerto Vallarta Jalisco [BSc thesis]. [Nayarit (Mexico)]: Universidad Autónoma de Nayarit.

Chan EH. 1989. White spot development, incubation and hatching success of leatherback turtle (Dermochelys coriacea) eggs from Rantau Abang, Malaysia. Copeia. 1989(1):42–47.

https://doi.org/10.2307/1445603

Deltsidou Anna, Lykeridou K, Plessas ST. 2000. Congenital anomalies and aetiology. Rev Clin Pharmacol Pharmacokinet. 14(3):111–115.

Du WG, Ji X. 2003. The effects of incubation thermal environments on size, locomotor performance and early growth of hatchling soft-shelled turtles, Pelodiscus sinensis. J Therm Biol. 28(4):279–286.

https://doi.org/10.1016/s0306-4565(03)00003-2

Dutton PH, Whitmore CP, Mrosovsky N. 1985. Masculinisation of leatherback turtle Dermochelys coriacea hatchlings from eggs incubated in styrofoam boxes. Biol Cons. 31(3):249–264.

https://doi.org/10.1016/0006-3207(85)90070-9

Esteban N, Laloë JO, Kiggen FSPL, Ubels SM, Becking LE, Meesters EH, Berkel J, Hays GC, Christianen MJA. 2018. Optimism for mitigation of climate warming impacts for sea turtles through nest shading and relocation. Sci Rep. 8(1):17625.

https://doi.org/10.1038/s41598-018-35821-6

Fuentes MMPB, Fish MR, Maynard JA. 2011. Management strategies to mitigate the impacts of climate change on sea turtle’s terrestrial reproductive phase. Mitig Adapt Strateg Glob Chang. 17(1):51–63.

https://doi.org/10.1007/s11027-011-9308-8

Gularte W. 2000. Deformities in hatchling olive ridleys. In: Mosier A, Foley AM, Brost B (eds.), Proceedings of the Twentieth Annual Symposium on Sea Turtle Biology and Conservation, 2000 Feb 29 to Mar 4; Orlando (FL). Miami (FL): NOAA-National Oceanic and Atmospheric Administration (US), National Marine Fisheries Service. 156 p. NOAA Technical Memorandum NMFS-SEFCS-477.

Hamann M, Godfrey MH, Seminoff JA, Arthur K, Barata PCR, Bjorndal KA, Bolten AB, Broderick AC, Campbell LM, Carreras C, et al. 2010. Global research priorities for sea turtles: informing management and conservation in the 21st century. Endanger Species Res. 11(3):245–269.

https://doi.org/10.3354/esr00279

Hart CE, Ley-Quiñonez C, Maldonado-Gasca A, Zavala- Norzagaray A, Abreu-Grobois FA. 2014. Nesting characteristics of olive ridley turtles (Lepidochelys olivacea) on El Naranjo Beach, Nayarit, Mexico. Herpetol Conserv Biol. 9(2):524–534.

Hart CE, Zavala-Norzagaray AA, Benítez-Luna O, Plata-Rosas LJ, Abreu-Grobois FA, Ley-Quiñónez CP. 2016. Effects of incubation technique on proxies for olive ridley sea turtle (Lepidochelys olivacea) neonate fitness. Amphibia-Reptilia. 37(4):417–426.

https://doi.org/10.1163/15685381-00003072

Ischer T, Ireland K, Booth DT. 2009. Locomotion performance of green turtle hatchlings from the Heron Island Rookery, Great Barrier Reef. Mar Biol. 156(7):1399–1409.

https://doi.org/10.1007/s00227-009-1180-7

[IUCN] International Union for Conservation of Nature. 2020. The IUCN Red List of Threatened Species. Version 2020-3. UK: IUCN; [accessed 2021 March 4]. https://www.iucnredlist.org.

Kaska Y, Downie R. 1999. Embryological development of sea turtles (Chelonia mydas, Caretta caretta) in the Mediterranean. Zool Middle East. 19(1):55–69.

https://doi.org/10.1080/09397140.1999.10637796

Kaska Y, Furness RW. 2001. Heavy metals in marine turtle eggs and hatchlings in the Mediterranean. Zool Middle East. 24(1):127–132.

https://doi.org/10.1080/09397140.2001.10637891

Koch V, Nichols WJ, Peckham H, de la Toba V. 2006. Estimates of sea turtle mortality from poaching and bycatch in Bahía Magdalena, Baja California Sur, Mexico. Biol Conserv. 128(3):327–334.

https://doi.org/10.1016/j.biocon.2005.09.038

Kutzari AC. 2006. Manual de Técnicas de Protección de Tortugas Marinas. Mexico: Kutzari, Asociación para el Estudio y Conservación de las Tortugas Marinas, AC. 16 p.

Les HL, Paitz RT, Bowden RM. 2007. Experimental test of the effects of fluctuating incubation temperatures on hatchling phenotype. J Exp Zool. 307-A(5):274–280.

https://doi.org/10.1002/jez.374

Lolavar A, Wyneken J. 2019. The impact of sand moisture on the temperature-sex ratio responses of developing loggerhead (Caretta caretta) sea turtles. Zoology. 138:125739.

https://doi.org/10.1016/j.zool.2019.125739

Mancini A, Koch V. 2009. Sea turtle consumption and black market trade in Baja California Sur, Mexico. Endanger Species Res. 7(1):1–10.

https://doi.org/10.3354/esr00165

Margolis L, Esch GW, Holmes JC, Kuris AM, Schad GA. 1982. The use of ecological terms in parasitology (report of an ad hoc committee of the American Society of Parasitologists). J Parasitol. 68(1):131–133.

https://doi.org/10.2307/3281335

Márquez MR. 1990. FAO species catalogue. Vol. 11: Sea turtles of the world. An annotated and illustrated catalogue of sea turtle species known to date. FAO Fisheries Synopsis No. 125. Rome (Italy): FAO. 81 p.

Maulany RI, Booth DT, Baxter GS. 2012. The effects of incubation temperature on hatchling quality in the olive ridley turtle, Lepidochelys olivacea, from Alas Purwo National Park, East Java, Indonesia: implications for hatchery management. Mar Biol. 159(12):2651–2661.

https://doi.org/10.1007/s00227-012-2022-6

Mazaris AD, Matsinos G, Pantis JD. 2009. Evaluating the impacts of coastal squeeze on sea turtle nesting. Ocean Coastal Manage. 52(2):139–145.

https://doi.org/10.1016/j.ocecoaman.2008.10.005

Mazaris AD, Schofield G, Gkazinou C, Almpanidou V, Hays GC. 2017. Global sea turtle conservation successes. Sci Adv. 3(9):e1600730.

https://doi.org/10.1126/sciadv.1600730

Mickelson LE, Downie JR. 2010. Influence of incubation temperature on morphology and locomotion performance of Leatherback (Dermochelys coriacea) hatchlings. Can J Zool. 88(4):359–368.

https://doi.org/10.1139/z10-007

Morreale SJ, Ruiz GJ, Spotila JR, Standora EA. 1982. Temperature-dependent sex determination: current practices threaten conservation of sea turtles. Science. 216(4551):1245–1247.

https://doi.org/10.1126/science.7079758

Mortimer JA, Bresson R. 1999. Temporal distribution and periodicity in hawksbill turtles (Eretmochelys imbricata) nesting at Cousin Island, Republic of Seychelles, 1971-1997. Chelonian Conserv Biol. 3(2):318–325.

Mrosovsky N. 1982. Sex ratio bias in hatchling sea turtles from artificially incubated eggs. Biol Cons. 23(4):309–314.

https://doi.org/10.1016/0006-3207(82)90087-8

Mrosovsky N. 2006. Distorting gene pools by conservation: assessing the case of doomed turtle eggs. Environ Manage. 38(4):523–531.

https://doi.org/10.1007/s00267-006-8348-4

Mrosovsky N, Yntema CL. 1980. Temperature dependence of sexual differentiation in sea turtles: implications for conservation practices. Biol Cons. 18(4):271–280.

https://doi.org/10.1016/0006-3207(80)90003-8

Patino-Martinez J, Marco A, Quiñones L, Abella E, Muriel-Abad R, Diéguez-Uribeondo J. 2012. How do hatcheries influence embryonic development of sea turtle eggs? Experimental analysis and isolation of microorganisms in leatherback turtle eggs. J Exp Zool Part A.317A(1):47–54.

https://doi.org/10.1002/jez.719

Pike DA. 2014. Forecasting the viability of sea turtle eggs in a warming world. Glob Change Biol. 20(1):7–15.

https://doi.org/10.1111/gcb.12397

Raustiala K. 1997. States, NGOs, and International Environment Institutions. Int Stud Q. 41(4):719–740.

https://doi.org/10.1111/1468-2478.00064

Revuelta O, León YM, Broderick AC, Feliz P, Godley BJ, Balbuena JA, Mason A, Poulton K, Savoré S, Raga JA, et al. 2014. Assessing the efficacy of direct conservation interventions: clutch protection of the leatherback marine turtle in the Dominican Republic. Oryx. 49(4):677–686.

https://doi.org/10.1017/s0030605313001488

Rojas M, Walker L. 2012. Malformaciones congénitas: aspectos generales y genéticos. Int J Morphol. 30(4):1256–1265.

https://doi.org/10.4067/s0717-95022012000400003

Rusli MU, Joseph J, Liew HC, Bachok Z. 2015. Effects of egg incubation methods on locomotor performances of green turtle (Chelonia mydas) hatchlings. Sains Malays. 44(1):49–55.

https://doi.org/10.17576/jsm-2015-4401-07

Santos KC, Blattman K, Ramirez Guillen A, Hart CE. 2019. Comparison of in situ, beach hatchery and box nursery incubation methods at Boca de Tomates beach, Jalisco, Mexico. Oral presentation at the 39th International Sea Turtle Symposium, 2019 Feb 2–8; Charleston (SC).

Valverde RA, Wingard S, Gómez F, Tordoir MT, Orrego CM. 2010. Field lethal incubation temperature of olive ridley sea turtle Lepidochelys olivacea at a mass nesting rookery. Endanger Species Res. 12(1):77–86.

https://doi.org/10.3354/esr00296

Wood JR, Wood FE. 2009. Artificial incubation of Green sea turtle eggs (Chelonia mydas). Proc World Maric Soc. 10(1– 4):215–221.

https://doi.org/10.1111/j.1749-7345.1979.tb00020.x