Evaluation of different levels of dietary protein and lipids on the growth, feed efficiency, and biometric and hematological indexes of juvenile white snooks, Centropomus viridis

Main Article Content

María Isabel Abdo-de la Parra
Luz Estela Rodríguez-Ibarra
Leonardo Ibarra-Castro
Juan Manuel Martínez-Brown
Carlos Alfonso Álvarez-González
Emyr Peña
Gabriela Velasco-Blanco
Patricia Domínguez-Jiménez
Gustavo Rodríguez-Montes de Oca

Abstract

An experiment was conducted to evaluate the effect of various levels of protein and dietary lipids on white snook (Centropomus viridis) performance. A 4 × 2 factorial design was used with 4 protein levels (40%, 46%, 52%, and 58%) and 2 lipid levels (10% and 13%), with 3 replicates per treatment. Fish with an initial weight of 14.80 ± 0.80 g were fed to apparent satiety 3 times a day for 6 weeks. Juvenile growth showed no significant differences among treatments. Feed efficiency was only affected by the protein level in the diet, and the best feed efficiency ratio was obtained with the 52% protein diets; the protein efficiency ratio was significantly lower with the 58% protein diets. The hepatosomatic index decreased with increasing protein content, and the peritoneal fat index increased with dietary lipid level. The condition factor was not affected by the dietary protein or lipid level. Hematocrit and total plasma protein were significantly higher at 40% protein; blood glucose and triglycerides were affected by both nutrients. It is concluded that juvenile C. viridis can be fed diets containing 40% protein and 10% lipids and a protein/energy ratio of 20.69 mg·kJ–1, under the experimental conditions of this study.

Downloads

Download data is not yet available.

Article Details

How to Cite
Abdo-de la Parra, M. I., Rodríguez-Ibarra, L. E., Ibarra-Castro, L., Martínez-Brown, J. M., Álvarez-González, C. A., Peña, E., … Rodríguez-Montes de Oca, G. (2023). Evaluation of different levels of dietary protein and lipids on the growth, feed efficiency, and biometric and hematological indexes of juvenile white snooks, Centropomus viridis. Ciencias Marinas, 49. https://doi.org/10.7773/cm.y2023.3368
Section
Research Article
Author Biography

María Isabel Abdo-de la Parra, Centro de Investigación en Alimentación y Desarrollo

Leproduccion y larvicultura. Investigador CIAD, Mazatlan

Metrics

References

Ahmed I, Reshi QM, Fazio F. 2020. The influence of the endogenous and exogenous factors on hematological parameters in different fish species: a review. Aquac Int. 28(3):869-899. https://doi:10.1007/s10499-019-00501-3 DOI: https://doi.org/10.1007/s10499-019-00501-3

Álvarez-Lajonchère LS, Tsuzuki M, Ibarra-Castro L. 2013. Cultivo de robalos, familia Centropomidae. In: Castello F (ed.), Piscicultura Marina en Latinoamérica. Bases científicas y técnicas para su desarrollo. Barcelona (Spain): Publicacion i Edicions de la Universitat de Barcelona. p. 231-245.

[AOAC] Association of Official Analytical Chemists. 2000. Official Methods of Analysis of the Association of Official Analytical Chemists. 17th ed. Arlington: AOAC. 684 p.

Arenas M, Álvarez-González A, Barreto A, Sánchez A, Cuzon G, Gaxiola G. 2021a. Evaluation of protein: lipid ratio on growth, feed efficiency, and metabolic response in juvenile yellowtail snapper Ocyurus chrysurus (Bloch, 1791). LAJAR. 49(2):329-341. https://doi:10.3856/vol49-issue2-fulltext-2660 DOI: https://doi.org/10.3856/vol49-issue2-fulltext-2660

Arenas M, Álvarez-González CA, Barreto A, Sánchez-Zamora A, Suarez-Bautista J, Cuzon G, Gaxiola G. 2021b. Physiological and metabolic protein-sparing effects of dietary lipids on common snook Centropomus undecimalis (Bloch, 1792) juveniles. Aquacult Nutr. 27(4):1089-1102. https://doi:10.1111/anu.13250 DOI: https://doi.org/10.1111/anu.13250

Bowyer JN, Qin JG, Stone DAJ. 2013. Protein, lipid and energy requirements of cultured marine fish in cold, temperate and warm water. Rev Aquac. 5(1):10-32. https://doi:10.1111/j.1753-5131.2012.01078.x DOI: https://doi.org/10.1111/j.1753-5131.2012.01078.x

Bulut M, Yiğit M, Ergün S, Kesbiç OS, Acar Ü, Gültepe N, Karga M, Yilmaz S, Güroy D. 2014. Evaluation of dietary protein and lipid requirements of two-banded seabream (Diplodus vulgaris) cultured in a recirculating aquaculture system. Aquac Int. 22(3):965-973. https://doi.org/10.1007/s10499-013-9720-z DOI: https://doi.org/10.1007/s10499-013-9720-z

Catacutan MR, Coloso RM. 1995. Effect of dietary-protein to energy ratios on growth, survival, and body-composition of juvenile Asian sea-bass, Lates calcarifer. Aquaculture. 131(1-2):125-133. https://doi.org/10.1016/0044-8486(94)00358-u DOI: https://doi.org/10.1016/0044-8486(94)00358-U

Chai XJ, Ji WX, Han H, Dai YX, Wang Y. 2013. Growth, feed utilization, body composition and swimming performance of giant croaker, Nibea japonica Temminck and Schlegel, fed at different dietary protein and lipid levels. Aquacult Nutr. 19(6):928-935. https://doi.org/10.1111/anu.12038 DOI: https://doi.org/10.1111/anu.12038

Cho J-H, Lee S, Lee B-J, Hur S-W, Kim K-W, Son M-H, Yoo D-J. 2021. A preliminary study of dietary protein requirement of juvenile marbled flounder (Pseudopleuronectes yokohamae). Anim Nut. (2):548-555. https://doi.org/10.1016/j.aninu.2020.11.009 DOI: https://doi.org/10.1016/j.aninu.2020.11.009

Cho SH, Kim HS, Myung SH, Jung W-G, Choi J, Lee S-M. 2015. Optimum dietary protein and lipid levels for juvenile rockfish (Sebastes schlegeli, Hilgendorf 1880). Aqua Res. 46(12):2954-2961. https://doi.org/10.1111/are.12450 DOI: https://doi.org/10.1111/are.12450

Concha-Frías B, Álvarez-González CA, Gaxiola G, Chiappa X, Sánchez-Zamora A, Martínez-García R, Camarillo-Coop S, Peña E, Jiménez-Martínez LD, de la Cruz-Alvarado FJ. 2018. Dietary protein requirement in common snook (Centropomus undecimalis) juveniles reared in marine and brackish water. Ecosis Rec Agrop. 5(13):45-54. https://doi.org/10.19136/era.a5n13.1393 DOI: https://doi.org/10.19136/era.a5n13.1393

Correia-Pinto RC, Pinto-Nunes AJ. 2021. Growth of juveniles of the fat snook, Centropomus parallelus, in response to dietary lipid, energy and protein. Arq Ciên Mar. 54(2):7-23. https://doi.org/10.32360/acmar.v54i2.43201 DOI: https://doi.org/10.32360/acmar.v54i2.43201

Dai Y-J, Jiang G-Z, Yuan X-Y, Liu W-B. 2018. High-fat-diet-induced inflammation depresses the appetite of blunt snout bream (Megalobrama amblycephala) through the transcriptional regulation of leptin/mammalian target of rapamycin. Br J Nut. 120(12):1422-1431. https://doi.org/10.1017/s000711451800288x DOI: https://doi.org/10.1017/S000711451800288X

De Souza JH, Machado-Fracalossi D, Sachsida-Garcia AS, Furtado-Ribeiro F, Tsuzuki MY. 2011. Desempenho zootécnico e econômico de juvenis de robalo-peva alimentados com dietas contendo diferentes concentrações proteicas = Growth and economic performance of juvenile fat snook fed diets containing different protein levels. Pesq Agropec Bras. 46(2):190-195. https://doi.org/10.1590/S0100-204X2011000200011 DOI: https://doi.org/10.1590/S0100-204X2011000200011

Del Rio-Zaragoza OB, Fájer-Ávila EJ, Almazán-Rueda P, Abdo-de la Parra MI. 2011. Hematological characteristics of the spotted rose snapper Lutjanus guttatus (Steindachner, 1869) healthy and naturally infected by dactylogyrid monogeneans. Tissue Cell. 43(3):137-142. https://doi.org/10.1016/j.tice.2011.01.002 DOI: https://doi.org/10.1016/j.tice.2011.01.002

Filho DW, Eble GJ, Kassner G, Caprario FX, Dafre AL, Ohira M. 1992. Comparative hematology in marine fish. Comp Biochem Physiol Comp Physiol Part A Physiol. 102(2):311-321. https://doi.org/10.1016/0300-9629(92)90141-c DOI: https://doi.org/10.1016/0300-9629(92)90141-C

Fischer W, Krupp F, Schneider W, Sommer C, Carpenter KE, Niem UH. 1995. Guía FAO para la Identificación de Especies para los Fines de la Pesca. Pacífico Centro–Oriental. Rome (Italy): Food and Agriculture Organization of the United Nations. 1200 pp.

Glencross B. 2006. The nutritional management of barramundi, Lates calcarifer - a review. Aquacult Nutr. 12(4):291-309. https://doi.org/10.1111/j.1365-2095.2006.00410.x DOI: https://doi.org/10.1111/j.1365-2095.2006.00410.x

González-Félix ML, Manjarrez-Osorio C, Pérez-Velázquez M, Urquidez-Bejarano P. 2015. Influence of dietary lipid on growth performance and body composition of the Gulf corvina, Cynoscion othonopterus. Aquaculture. 448:401-409. https://doi.org/10.1016/j.aquaculture.2015.06.031 DOI: https://doi.org/10.1016/j.aquaculture.2015.06.031

Gracia-López V, García-Galano T, Gaxiola-Cortes G, Pacheco-Campos J. 2003. Efecto del nivel de proteína en la dieta y alimentos comerciales sobre el crecimiento y la alimentación en juveniles del robalo blanco, Centropomus undecimalis (Bloch, 1792) = Effect of dietary protein level and commercial feeds on growth and feeding of juvenile common snook, Centropomus undecimalis (Bloch, 1792). Cienc Mar. 29(4B):585-594. https://doi.org/10.7773/cm.v29i42.198 DOI: https://doi.org/10.7773/cm.v29i42.198

Grapiuna-de Carvalho MA, Loureiro-Fernandes LF, de Carvalho-Gomes L. 2017. Digestibility, protein retention rate and ammonia excretion in juvenile fat snook (Centropomus parallelus) fed with different protein levels. Cienc Rural. 47(7). https://doi.org/10.1590/0103-8478cr20160369 DOI: https://doi.org/10.1590/0103-8478cr20160369

Grisdale-Helland B, Shearer K, Gatlin D, Helland S. 2008. Effects of dietary protein and lipid levels on growth, protein digestibility, feed utilization and body composition of Atlantic cod (Gadus morhua). Aquaculture. 283(1-4):156-162. https://doi.org/10.1016/j.aquaculture.2008.07.013 DOI: https://doi.org/10.1016/j.aquaculture.2008.07.013

Han T, Li X, Wang J, Hu S, Jiang Y, Zhong X. 2014. Effect of dietary lipid level on growth, feed utilization and body composition of juvenile giant croaker Nibea japonica. Aquaculture. 434:145-150. https://doi.org/10.1016/j.aquaculture.2014.08.012 DOI: https://doi.org/10.1016/j.aquaculture.2014.08.012

Hecht T, Irish A, Sales J. 2003. Effect of protein level and varying protein - Lipid concentrations on growth characteristics of juvenile spotted grunter Pomadasys commersonnii (Haemulidae). Afr J Mar Sci. 25:283-288. https://doi.org/10.2989/18142320309504017 DOI: https://doi.org/10.2989/18142320309504017

Ibarra-Castro L, Navarro-Flores J, Sánchez-Téllez JL, Martínez-Brown JM, Ochoa-Bojórquez LA, Rojo-Cebreros AH. 2017. Hatchery production of Pacific white snook at CIAD-Unity Mazatlan, Mexico. World Aquaculture. 48(3):25-29.

Jiang S, Wu X, Luo Y, Wu M, Lu S, Jin Z, Yao W. 2016. Optimal dietary protein level and protein to energy ratio for hybrid grouper (Epinephelus fuscoguttatus female x Epinephelus lanceolatus male) juveniles. Aquaculture. 465:28-36. https://doi.org/10.1016/j.aquaculture.2016.08.030 DOI: https://doi.org/10.1016/j.aquaculture.2016.08.030

Khan KU, Rodrigues AT, Mansano CFM, Queiroz DMD, Sakomura NK, Romaneli RD, do Nascimento TMT, Fernandes JBK. 2019. Dietary protein quality and proper protein to energy ratios: a bioeconomic approach in aquaculture feeding practices. Lat Am J Aquat Res. 47(2):232-239. https://doi.org/10.3856/vol47-issue2-fulltext-3 DOI: https://doi.org/10.3856/vol47-issue2-fulltext-3

Kokou F, Henry M, Nikoloudaki C, Kounna C, Vasilaki A, Fountoulaki E. 2019. Optimum protein-to-lipid ratio requirement of the juvenile shi drum (Umbrina cirrosa) as estimated by nutritional and histological parameters. Aquacult Nutr. 25(2):444-455. https://doi.org/10.1111/anu.12870 DOI: https://doi.org/10.1111/anu.12870

Labastida-Che A, Núñez-Orozco AL, Oviedo-Piamonte JA. 2013. Aspectos biológicos del robalo hocicudo Centropomus viridis, en el sistema lagunar Chantuto-Panzacola, Chiapas, México. Cien Pesq. 21(2):21-28.

Li W, Wen X, Huang Y, Zhao J, Li S, Zhu D. 2017. Effects of varying protein and lipid levels and protein-to-energy ratios on growth, feed utilization and body composition in juvenile Nibea diacanthus. Aquacult. Nutr. 23(5):1035-1047. https://doi.org/10.1111/anu.12471 DOI: https://doi.org/10.1111/anu.12471

Liu H, Dong X, Tan B, Du T, Zhang S, Yang Y, Chi S, Yang Q, Liu H. 2021. Effects of dietary protein and lipid levels on growth, body composition, enzymes activity, expression of IGF-1 and TOR of juvenile northern whiting, Sillago sihama. Aquaculture. 533:736166. https://doi.org/10.1016/j.aquaculture.2020.736166 DOI: https://doi.org/10.1016/j.aquaculture.2020.736166

Ma B, Wang L, Lou B, Tan P, Xu D, Chen R. 2020. Dietary protein and lipid levels affect the growth performance, intestinal digestive enzyme activities and related genes expression of juvenile small yellow croaker (Larimichthys polyactis). Aquac. Rep. 17:100403. https://doi.org/10.1016/j.aqrep.2020.100403 DOI: https://doi.org/10.1016/j.aqrep.2020.100403

Macal-López K, Velázquez-Velázquez E, Rivera-Velázquez G. 2013. Diversidad y Traslape de nicho trófico de los robalos (Perciformes:Centropomidae) en la Reserva de la Biósfera la Encrucijada, Chiapas, México. Lacandonia. 7(1):91-98.

[NRC] National Research Council. 2011. Nutrient Requirements of fish and shrimp. Washington DC: The National Academies Press. 376 p.

Ozorio ROA, Valente LMP, Pousao-Ferreira P, Oliva-Teles A. 2006. Growth performance and body composition of white seabream (Diplodus sargus) juveniles fed diets with different protein and lipid levels. Aquac. Res. 37(3):255-263. https://doi.org/10.1111/j.1365-2109.2005.01427.x DOI: https://doi.org/10.1111/j.1365-2109.2005.01427.x

Pérez-Velázquez M, González-Félix M, Viana MT, Lazo-Corvera JP, Maldonado-Othón CA. 2015. Effects of dietary protein and lipid levels on growth and body composition of the Gulf corvina, Cynoscion othonopterus. Int J Aqua Sci. 6(2):11-28.

Rahim A, Abbas G, Ferrando S, Gallus L, Ghaffar A, Mateen A, Hafeez-ur-Rehman M, Waryani B. 2016. Effects of varying dietary protein level on growth, nutrient utilization and body composition of juvenile blackfin sea bream, Acanthopagrus berda (Forsskal, 1775). Pak J Zool. 48(4):1089-1097.

Rahimnejad S, Dabrowski K, Izquierdo M, Malinovskyi O, Kolářová J, Policar T. 2021. Effects of dietary protein and lipid levels on growth, body composition, blood biochemistry, antioxidant capacity and ammonia excretion of European grayling (Thymallus thymallus). Front Mar Sci. 8:715636. https://doi.org/10.3389/fmars.2021.715636 DOI: https://doi.org/10.3389/fmars.2021.715636

Sargent JR, Tocher DR, Bell JG. 2002. The lipids. In: Halver JE, Hardy RW (eds.), Fish Nutrition. New York: Academic Press. p. 181-257. DOI: https://doi.org/10.1016/B978-012319652-1/50005-7

Satheeshkumar P, Senthilkumar D, Ananthan G, Soundarapandian P, Bhaseer-Khan A. 2011. Measurement of hematological and biochemical studies on wild marine carnivorous fishes from Vellar estuary, southeast coast of India. Comp Clin Pathol. 20:127-134. https://doi.org/10.1007/s00580-010-0966-9 DOI: https://doi.org/10.1007/s00580-010-0966-9

Steinberg CEW. 2022. Aquatic Animal Nutrition. Chapter 2, Protein Requirement—‘Only Meat Makes You Strong’. Cham (Switzerland): Springer. p. 11-41. https://doi.org/10.1007/978-3-030-87227-4_2 DOI: https://doi.org/10.1007/978-3-030-87227-4_2

Teles AO, Couto A, Enes P, Peres H. 2020. Dietary protein requirements of fish–a meta-analysis. Rev Aquac. 12(3):1445-1477. https://doi.org/10.1111/raq.12391 DOI: https://doi.org/10.1111/raq.12391

Tibbetts SM, Lall SP, Milley JE. 2005. Effects of dietary protein and lipid levels and DP DE–1 ratio on growth, feed utilization and hepatosomatic index of juvenile haddock, Melanogrammus aeglefinus L. Aquacult Nutr. 11(1):67-75. https://doi.org/10.1111/j.1365-2095.2004.00326.x DOI: https://doi.org/10.1111/j.1365-2095.2004.00326.x

Tocher DR. 2003. Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci. 11(2):107-184. https://doi.org/10.1080/713610925 DOI: https://doi.org/10.1080/713610925

Wang JT, Han T, Li XY, Yang YX, Yang M, Hu SX, Jiang YD, Harpaz S. 2017. Effects of dietary protein and lipid levels with different protein-to-energy ratios on growth performance, feed utilization and body composition of juvenile red-spotted grouper, Epinephelus akaara. Aquacult. Nutr. 23(5):994-1002.https://doi.org/10.1111/anu.12467 DOI: https://doi.org/10.1111/anu.12467

Wang J, Huang R, Han T, Zheng P, Xu H, Su H, Wang Y. 2021. Dietary protein requirement of juvenile spotted knifejaw Oplegnathus punctatus. Aquac. Rep. 21:100874. https://doi.org/10.1016/j.aqrep.2021.100874 DOI: https://doi.org/10.1016/j.aqrep.2021.100874

Wang L, Zhang W, Gladstone S, Ng W-K, Zhang J, Shao Q. 2019. Effects of isoenergetic diets with varying protein and lipid levels on the growth, feed utilization, metabolic enzymes activities, antioxidative status and serum biochemical parameters of black sea bream (Acanthopagrus schlegelii). Aquaculture. 513:734397. https://doi.org/10.1016/j.aquaculture.2019.734397 DOI: https://doi.org/10.1016/j.aquaculture.2019.734397

Wu X, Gatlin DM III. 2014. Effects of altering dietary protein content in morning and evening feedings on growth and ammonia excretion of red drum (Sciaenops ocellatus). Aquaculture. 434:33-37. https://doi.org/10.1016/j.aquaculture.2014.07.019 DOI: https://doi.org/10.1016/j.aquaculture.2014.07.019

Xu Z, Zhang P, Chang Q, Chen S, Bian L, Wang Z. 2021. Effects of dietary protein and lipid levels on growth performance, muscle composition, immunity index and biochemical index of the greenfin horse-faced filefish (Thamnaconus septentrionalis) juvenile. J Ocean Univ China. 20(5):1245-1252. https://doi.org/10.1007/s11802-021-4885-y DOI: https://doi.org/10.1007/s11802-021-4885-y

Yan X, Yang J, Dong X, Tan B, Zhang S, Chi S, Yang Q, Liu H, Yang Y. 2020. The optimal dietary protein level of large-size grouper Epinephelus coioides. Aquac. Nut. 26(3):705-714.https://doi.org/10.1111/anu.13030 DOI: https://doi.org/10.1111/anu.13030

Yoo GY, Park IS, Lee S. 2022. Effects of graded dietary lipid levels on growth performance, fatty acid profile, and hematological characteristics of hybrid pufferfish (Takifugu obscurus x T. rubripes) juveniles. Aquac. Rep. 24:101120. https://doi.org/10.1016/j.aqrep.2022.101120 DOI: https://doi.org/10.1016/j.aqrep.2022.101120

Zhang Y, Sun Z, Wang A, Ye C, Zhu X. 2017. Effects of dietary protein and lipid levels on growth, body and plasma biochemical composition and selective gene expression in liver of hybrid snakehead (Channa maculata female x Channa argus male) fingerlings. Aquaculture. 468(Part 1):1-9. https://doi.org/10.1016/j.aquaculture.2016.09.052 DOI: https://doi.org/10.1016/j.aquaculture.2016.09.052

Zhang Y, Lu R, Qin CB, Nie G. 2020. Precision nutritional regulation and aquaculture. Aquac. Rep. 18:100496. https://doi.org/10.1016/j.aqrep.2020.100496 DOI: https://doi.org/10.1016/j.aqrep.2020.100496

Most read articles by the same author(s)