Use of intertidal macroalgae as bioindicators of anthropogenic nutrient disturbance in the rocky coasts of the tropical central Mexican Pacific

Main Article Content

Careli Vergara-Carranza
https://orcid.org/0009-0007-1747-1916
Norma López
https://orcid.org/0000-0003-2794-5349
Alejandra Piñón-Gimate
https://orcid.org/0000-0002-3651-9985

Abstract

Bahía de Zihuatanejo, Mexico, exhibits disturbances in its rocky shores due to large amounts of nutrients that enter the sea due to urbanization and mass tourism. These nutrients are traced in macroalgae using stable isotopes. The objective of this study was to use 4 species of macroalgae as bioindicators to infer nutrient sources in the system through δ15N and the elemental nitrogen (N) content. Samples were collected in the rainy and dry seasons of 2021 at 3 sites in the Zihuatanejo region: La Madera, Las Salinas, and La Majahua. Water samples were taken at each site and season to determine nitrate (NO3) and phosphate (PO4) concentrations. Isotopic signals and N content were evaluated in Hypnea spinella, Padina gymnospora, Ulva intestinalis, and Ulva lactuca for each site and season. The concentrations of NO3 and PO4, which were highest at Las Salinas and showed no differences between La Madera and La Majahua, were similar to those previously reported for the region. The highest δ15N signals were found in U. intestinalis and H. spinella at Las Salinas (16.12‰ and 15.38‰, respectively) and La Madera (15.12‰ and 13.58‰, respectively) and were close to the isotopic wastewater signal. In La Majahua, low signals were obtained for H. spinella (13.54‰), P. gymnospora (9.24‰), and U. lactuca (8.24‰), with values that were close to the isotopic signal of nutrient-rich oceanic waters. The N content varied depending on the species and site, although it was generally higher at Las Salinas. The isotopic signals agreed with those reported for anthropogenic and natural nutrient-enriched coasts. The species U. intestinalis and H. spinella can be used as bioindicators of anthropogenic disturbance due to sewage discharge in the region.

Downloads

Download data is not yet available.

Article Details

How to Cite
Vergara-Carranza, C., López, N., & Piñón-Gimate, A. (2024). Use of intertidal macroalgae as bioindicators of anthropogenic nutrient disturbance in the rocky coasts of the tropical central Mexican Pacific. Ciencias Marinas, 50. https://doi.org/10.7773/cm.y2024.3416
Section
Research Article

Metrics

References

Adams SM. 2005. Assessing cause and effect of multiple stressors on marine systems. Mar Pollut Bull. 51(8–12):649-657. https://doi.org/10.1016/j.marpolbul.2004.11.040

Aguiñiga S, Sanchez A, Silverberg N. 2010. Temporal variations of C, N, δ13C, and δ15N in organic matter collected by a sediment trap at Cuenca Alfonso, Bahía de La Paz, SW Gulf of California. Cont Shelf Res. 30(15):1692-1700. https://doi.org/10.1016/j.csr.2010.07.005

Alquezar R, Glendenning L, Costanzo S. 2013. The use of the brown macroalgae, Sargassum flavicans, as a potential bioindicator of industrial nutrient enrichment. Mar Pollut Bull. 77(1–2):140-146. http://doi.org/10.1016/j.marpolbul.2013.10.013

Barile J. 2004. Evidence of anthropogenic nitrogen enrichment of the littoral waters of East Central Florida. J Coast Res. 20(4):1237-1245. https://doi.org/10.2112/04-0212.1

Battisti C, Poeta G, Fanelli G. 2016. Heterogeneity, dynamism, and diversity of natural systems. In: Battisti C, Poeta G, Fanelli G (eds.), An Introduction to Disturbance Ecology. Switzerland: Springer Cham. p. 1-6. https://doi.org/10.1007/978-3-319-32476-0

Benedetti CL, Trussell G. 2014. Intertidal rocky shores. In: Bertness M, Bruno J, Silliman B, Stachowicz J (eds.), Marine Community Ecology and Conservation. Sunderland (USA): Sinauer Associates, Inc. p. 203-225.

Bergamino L, Tudurí A, Bueno C, Brugnoli E, Valenzuela L, Martínez A, García-Rodríguez F. 2017. Aplicación de isótopos estables como indicadores de flujos de energía en ambientes costeros de Uruguay [Application of stable isotopes as indicators of energy flows at Uruguay coastal environments]. INNOTEC. 2017(13):9-18. https://doi.org/10.26461/13.01

Bonanno G, Orlando-Bonaca M. 2018. Perspectives on using marine species as bioindicators of plastic pollution. Mar Pollut Bull. 137:209-221. https://doi.org/10.1016/j.marpolbul.2018.10.018

Bonanno G, Veneziano V, Piccione V. 2020. The alga Ulva lactuca (Ulvaceae, Chlorophyta) as a bioindicator of trace element contamination along the coast of Sicily, Italy. Sci Total Environ. 699:134329. https://doi.org/10.1016/j.scitotenv.2019.134329

Bricker SB, Longstaff B, Dennison W, Jones A, Boicourt K, Wicks C, Woerner J. 2008. Effects of nutrient enrichment in the nation’s estuaries: A decade of change. Harmful Algae. 8(1):21-32. https://doi.org/10.1016/j.hal.2008.08.028

Calizza E, Aktan Y, Costantini ML, Rossi L. 2015. Stable isotope variations in benthic primary producers along the Bosphorus (Turkey): a preliminary study. Mar Pollut Bull. 97(1–2):535-538. https://doi.org/10.1016/j.marpolbul.2015.05.016

[CONAGUA] Comisión Nacional del Agua. 2022. Normales climatológicas por estado [Normal weather conditions by state]: CONAGUA; [accessed 2022 Apr 19]. https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/normales-climatologicas-por-estado?estado=gro.

[CONAGUA, SEMARNAT] Comisión Nacional del Agua, Secretaría de Medio Ambiente y Recursos Naturales. 2020. Inventario nacional de plantas municipales de potabilización y de tratamiento de aguas residuales en operación [National inventory of municipal water purification and wastewater treatment plants in operation]: Gobierno de México; [accessed 2020 Mar 20]. https://www.gob.mx/conagua/documentos/inventario-de-plantas-municipales-de-potabilizacion-y-de-tratamiento-de-aguas-residuales-en-operacion.

[CONANP] Comisión Nacional de Áreas Naturales Protegidas. 2023. Estudio Previo Justificativo para el establecimiento del Área Natural Protegida Área de Protección de Flora y Fauna APFF Hermenegildo Galeana, en el estado de Guerrero, México [Preliminary Justification Study for the implementation of the Protected Natural Area Hermenegildo Galeana Flora and Fauna Protection Area, in the state of Guerrero, Mexico]. Guerrero, (Mexico): CONANP.

Córdova-Tapia F, Zambrano-González L, Ayala-Azcárraga C, Orozco-Martínez C, López-Guijosa A, Ortiz H, Levy-Gálvez K. 2014. Análisis de la Manifestación de Impacto Ambiental del Proyecto “Dragado de la Laguna de Salinas, Zihuatanejo de Azueta, Guerrero” [Analysis of the Environmental Impact Demonstration of the Project “Dredging the Salinas Lagoon, Zihuatanejo de Azueta, Guerrero”]. Mexico City (Mexico): Grupo de Análisis de Manifestaciones de Impacto Ambiental, Unión de Científicos Comprometidos con la Sociedad. Technical Report, MIA-12GE2014HD02. 14 p.

Costanzo SD, O’Donohue MJ, Dennison WC, Loneragan NR, Thomas M. 2001. A new approach for detecting and mapping sewage impacts. Mar Pollut Bull. 42(2):149-156. https://doi.org/10.1016/S0025-326X(00)00125-9

Costanzo SD, Udy J, Longstaff B, Jones A. 2005. Using nitrogen stable isotope ratios (δ15N) of macroalgae to determine the effectiveness of sewage upgrades: changes in the extent of sewage plumes over four years in Moreton Bay, Australia. Mar Pollut Bull. 51(1–4):212-217. https://doi.org/10.1016/j.marpolbul.2004.10.018

Dailer M, Knox S, Smith E, Napier M, Smith M. 2010. Using δ15N values in algal tissue to map locations and potential sources of anthropogenic nutrient inputs on the island of Maui, Hawai‘i, USA. Mar Pollut Bull. 60(5):655-671. https://doi.org/10.1016/j.marpolbul.2009.12.021

Dawson E. 1960. Marine Red Algae of Pacific Mexico. Allan Hancock Pacific Expeditions. Los Angeles (USA): U.C. Press. 17(1):1-409.

Derse E, Knee KL, Wankel SD, Kendall C, Berg CJ, Paytan A. 2007. Identifying sources of nitrogen to Hanalei Bay, Kauai, utilizing the nitrogen isotope signature of macroalgae. Environ Sci Technol. 41(15):5217-5223. https://doi.org/10.1021/es0700449

Escalante-Vargas I. 2003. Variación fenológica de la ficoflora durante un ciclo anual en playa la madera, Zihuatanejo, Guerrero [Phenological variation of phycoflora during an annual cycle on La Madera beach, Zihuatanejo, Guerrero] [BSc thesis]. [Mexico]: Universidad Nacional Autónoma de México. 199 p.

Fong P, Donohoe M, Zedler B. 1994. Nutrient concentration in the tissue of the macroalga Enteromorpha as a function of nutrient history: an experimental evaluation using field microcosm. Mar Ecol Prog Ser. 106:273-281.

Francescangeli F, Quijada M, Armynot du Châtelet E, Frontalini F, Trentesaux A, Billon G, Bouchet VMP. 2020. Multidisciplinary study to monitor consequences of pollution on intertidal benthic ecosystems (Hauts de France, English Channel, France): Comparison with natural areas. Mar Env Res. 160:105034. https://doi.org/10.1016/j.marenvres.2020.105034

Fry B. 2006. Stable isotope ecology. New York: Springer. 318 p.

García E. 2004. Modificaciones al sistema de clasificación climática de Köppen [Modifications to the Köppen climate classification system]. Mexico: Universidad Nacional Autónoma de México, Instituto de Geografía. 90 p.

García O, Arias-Villalón V, Barquín Serrano R, Ontiveros-Mendoza M, Ortega-Saldana O. 2018. La percepción de los impactos del turismo en la comunidad de Ixtapa-Zihuatanejo, México, desde el modelo de mapas causales [Perception of tourism impacts in the Ixtapa-Zihuatanejo community, Mexico, from the causal maps model]. Rio Grande del Sur (Brazil): Universidad de Caxias do Sul. 10(3):441-463. https://doi.org/10.18226/21789061.v10i3p441

Gartner A, Lavery P, Smit J. 2002. Use of δ15N signatures of different functional forms of macroalgae and filter-feeders to reveal temporal and spatial patterns in sewage dispersal. Mar Ecol Prog Ser. 235:63-73.

[GMZ] Gobierno Municipal de Zihuatanejo. 2022. Plan municipal de desarrollo 2021-2024 Zihuatanejo De Azueta [Municipal development plan 2021-2024 Zihuatanejo de Azueta]: GMZ; [accessed 2022 Feb 7]. https://zihuatanejodeazueta.gob.mx/plan-de-desarrollo-municipal.

Google. 2021a. Bahía de Zihuatanejo (17°38′12.5″ N, 101°33′03.1″ W) [map]: Google; [accessed 2021 Sep 5]. https://maps.app.goo.gl/rwK2BphbxoYGF46r7.

Google. 2021b. Playa Majahua, Zihuatanejo (17°38′15.9″ N, 101°34′39.2″ W) [map]: Google; [accessed 2021 Sep 5]. https://maps.app.goo.gl/2orMHvJEC5UzWg3FA.

Granger J, Sigman M, Needoba A, Harrison J. 2004. Coupled nitrogen and oxygen isotope fractionation of nitrate during assimilation by cultures of marine phytoplankton. Limnol Oceanogr. 49(5):1763-1773. https://doi.org/10.4319/lo.2004.49.5.1763

Guerrero R, Berlanga M. 2000. Isótopos estables: fundamento y aplicaciones [Stable isotopes: basis and applications]. Act Soc Esp Micro. 30:17-23.

Heaton E. 1986. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem Geol. 59:87-102.

[IMTA] Instituto Mexicano de Tecnología del Agua. 2010. Estudio de Clasificación de la Bahía de Ixtapa-Zihuatanejo, Gro. [Ixtapa-Zihuatanejo Bay Classification Study, Gro.]. Guerrero (Mexico): IMTA. Technical Report: FON-CNA-2004-02-016.

Inda T, Gómez S. 2015. Los centros integralmente planeados (CIP’S) en México = The integrally planed centers (IPC’s) in Mexico. Rev Latino-Am Turismología. 1(1):36-53.

[INEGI] Instituto Nacional de Estadística y Geografía. 2009. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos, José Azueta, Guerrero [Municipal Geographic Information Report of the United Mexican States, José Azueta, Guerrero]: INEGI; [accessed 2022 Dec]. http://www3.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/12/12038.pdf.

[INEGI] Instituto Nacional de Estadística y Geografía. 2020. Panorama sociodemográfico de Guerrero: Censo de Población y Vivienda 2020 [Sociodemographic panorama of Guerrero: Population and Housing Census 2020]: INEGI; [accessed 2022 Dec]. https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/702825197858.pdf.

Instituto de Ingeniería. 2011. Problemática Encontrada en Playa las Gatas e Isla Ixtapa en el Municipio de Zihuatanejo de Azueta, Estado de Guerrero = Problems Found in Playa las Gatas and Isla Ixtapa in the Municipality of Zihuatanejo de Azueta, State of Guerrero. Mexico City: UNAM. 86 p.

Izurieta J, Saldaña P, Inclan L, Sánchez J, Ordoñez A, Ruíz L, Mejía T. 2014. Contaminación en la bahía de Zihuatanejo. In: Botello A V, Páez-Osuna F, Méndez-Rodríguez L, Betancourt-Lozano M, Álvarez-Borrego S, Lara-Lara R (eds.), Pacífico Mexicano. Contaminación e Impacto Ambiental: Diagnóstico y Tendencias. Campeche (Mexico): UAC, UNAM-ICMYL, CIAD-Mazatlán, CIBNOR, CICESE. p. 751-788.

Kendall C. 1998. Tracing nitrogen sources and cycling in catchments. Isotope tracers in catchment hydrology. Amsterdam (the Netherlands): Elsevier. p. 519-576. https://doi.org/10.1016/B978-0-444-81546-0.50023-9

Kessler S. 2006. The circulation of the eastern tropical Pacific: A review. Prog Oceanogr. 69(2–4):181-217. https://doi.org/10.1016/j.pocean.2006.03.009

Kim S, Park SR, Kang YH, Kim GY, Lee KS, Lee HJ, Won NI, Kil HJ. 2014. Usefulness of tissue nitrogen content and macroalgal community structure as indicators of water eutrophication. J Appl Phycol. 2014(26):1149-1158. https://doi.org/10.1007/s10811-013-0194-1

Kowalewski M, Wittmer JM, Dexter TA, Amorosi A, Scarponi D. 2015. Differential responses of marine communities to natural and anthropogenic changes. Proc Royal Soc B. 282:1803. https://doi.org/10.1098/rspb.2014.2990

Lapointe BE, Barile PJ, Matzie WR. 2004. Anthropogenic nutrient enrichment of seagrass and coral reef communities in the Lower Florida Keys: discrimination of local versus regional nitrogen sources. J Exp Mar Biol Ecol. 308(1):23-58. https://doi.org/10.1016/j.jembe.2004.01.019

Lapointe BE, Herren LW, Debortoli DD, Vogel MA. 2015. Evidence of sewage-driven eutrophication and harmful algal blooms in Florida’s Indian River Lagoon. Harmful Algae. 43:82-102. https://doi.org/10.1016/j.hal.2015.01.004

Lemesle S, Erraud A, Mussio I, Rusig M, Claquin P. 2016. Dynamics of δ15N isotopic signatures of different intertidal macroalgal species: assessment of bioindicators of N sources in coastal areas. Mar Pollut Bull. 110(1):470-483. https://doi.org/10.1016/j.marpolbul.2016.06.006

Lemesle S, Mussio I, Rusig AM, Menet-Nédélec F, Claquin P. 2015. Impact of seaweed beachings on dynamics of δ15N isotopic signatures in marine macroalgae. Mar Pollut Bull. 97(1–2):241-254. https://doi.org/10.1016/j.marpolbul.2015.06.010

Lin H, Wu C, Kao J, Kao Y, Meng J. 2007. Mapping anthropogenic nitrogen through point sources in coral reefs using δ15N in macroalgae. Mar Ecol Prog Ser. 335:95-109.

Lin T, Fong P. 2008. Macroalgal bioindicators (growth, tissue N, δ15N) detect nutrient enrichment from shrimp farm effluent entering Opunohu Bay, Moorea, French Polynesia. Mar Pollut Bull. 56(2):245-249. https://doi.org/10.1016/j.marpolbul.2007.09.031

López N, Candelaria C, Ramírez-García P, Rodríguez D. 2017. Structure and temporal dynamic of tropical turf-forming macroalgal assemblages of the western coast of Mexico. Lat Am J Aquat Res. 45(2):329-340. https://doi.org/10.3856/vol45-issue2-fulltext-9

López N, León-Tejera H, González-Reséndiz L, Candelaria C, Ramírez-García P, Rodríguez D. 2022. Macroalgas arrecifales del Pacífico Centro-Sur de México: Estado del arte [Central-South Pacific reef macroalgae: State of the art]. Hidrobiológica. 32(3):285-293.

Martins CDL, Arantes N, Faveri C, Batista MB, Oliveira EC, Pagliosa PR, Fonseca AL, Nunes JMC, Chow F, Pereira SB, et al. 2012. The impact of coastal urbanization on the structure of phytobenthic communities in southern Brazil. Mar Pollut Bull. 64(4):772-778. https://doi.org/10.1016/j.marpolbul.2012.01.031

Mateo-Cid E, Mendoza-González C. 1997. Nuevos registros de algas marinas para Oaxaca, México [New algae records for Oaxaca, Mexico]. Polibotanica. 4:54-74.

Mateo-Cid E, Mendoza-González C. 2012. Algas marinas bentónicas de la costa noroccidental de Guerrero, México [Benthic seaweed from the northwest coast of Guerrero, Mexico]. Rev Mex Biodivers. 83(4):905-928. https://doi.org/10.7550/rmb.28104

McClelland JW, Valiela I, Michener RH. 1997. Nitrogen‐stable isotope signatures in estuarine food webs: A record of increasing urbanization in coastal watersheds. Limnol Oceanogr. 42(5):930-937. https://doi.org/10.4319/lo.1997.42.5.0930

Morales R, Vélez H, Mejía A, Ramírez I, Izurieta J, Saldaña P. 2008. Hidrodinámica de la Bahía de Zihuatanejo, México [Hydrodynamic of the Bay of Zihuatanejo, Mexico]. XXIII Congreso Latinoamericano de Hidráulica Cartagena de Indias Colombia, Septiembre 2008. Colombia. 15 p.

Nava H, Ramírez- Herrera T. 2011. Government conservation policies on Mexican coastal areas: is “top-down” management working. Rev Biol Trop. 59(4):1487-1501.

Nava H, Ramírez-Herrera M, Figueroa-Camacho G, Villegas-Sanchez M. 2014. Habitat characteristics and environmental factors related to boring sponge assemblages on coral reefs near populated coastal areas on the Mexican Eastern Pacific coast. Mar Biodivers. 44:45-54.

Nava H, López N, Ramírez-García P, Garibay-Valladolid E. 2021. Contrasting effects of the El Niño 2015–16 event on coral reefs from the central pacific coast of Mexico. Mar Ecol. 42(2):e12630. https://doi.org/10.1111/maec.12630

Newman EA. 2019. Disturbance Ecology in the Anthropocene. Front Ecol Evol. 7:147. https://doi.org/10.3389/fevo.2019.00147

Ochoa-Izaguirre MJ, Soto-Jiménez MF. 2013. Evaluation of nitrogen sources in the lagoon system of Urias, Gulf of California, based on stable isotopes in macroalgae = Evaluación de las fuentes de nitrógeno en el sistema lagunar de Urías, golfo de California, mediante el uso de isótopos estables en macroalgas. Cienc Mar. 39(4):413-430. http://doi.org/10.7773/cm.v39i4.2285

Ochoa-Izaguirre MJ, Soto-Jiménez MF. 2015. Variability in nitrogen stable isotope ratios of macroalgae: consequences for the identification of nitrogen sources. J Phycol. 51(1):46-65. https://doi.org/10.1111/jpy.12250

Ochoa-Izaguirre M, Voltolina D, Victorino-Sánchez G. 2017. Nitrogen, Phosphorus and N: P ratio in macroalgae of two Lagoon Systems of NW Mexico. Turkish J Fish Aquat Sci. 17(5):911-919.

Orlando-Bonaca M, Lipej L, Orfanidis S. 2008. Benthic macrophytes as a tool for delineating, monitoring and assessing ecological status: The case of Slovenian coastal waters. Mar Pollut Bull. 56(4):666-676. https://doi.org/10.1016/j.marpolbul.2007.12.018

Pedersen F, Borum J. 1996. Nutrient control of algal growth in estuarine waters. Nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplankton and species of macroalgae. Mar Ecol Prog Ser. 142:261-272.

Peterson BJ, Fry B. 1987. Stable isotopes in ecosystem studies. Ann Rev Ecol Syst. 18(1):293-320. https://doi.org/10.1146/annurev.es.18.110187.001453

Piñón-Gimate A, Soto-Jiménez MF, Ochoa-Izaguirre MJ, García-Pagés E, Páez-Osuna, F. 2009. Macroalgae blooms and δ15N in subtropical coastal lagoons from the Southeastern Gulf of California: Discrimination among agricultural, shrimp farm and sewage effluents. Mar Pollut Bull. 58(8):1144-1151. https://doi.org/10.1016/j.marpolbul.2009.04.004

Piñón-Gimate A, Espinosa-Andrade N, Sánchez A, Casas-Valdez M. 2017. Nitrogen isotopic characterization of macroalgae blooms from different sites within a subtropical bay in the Gulf of California. Mar Pollut Bull. 116(1–2):130-136. https://doi.org/10.1016/j.marpolbul.2016.12.075

Planea Tropical S. de R.L. de C.V. 2015. Actualización plan director de desarrollo urbano Zihuatanejo-Ixtapa 2015-2030 [Update Master Plan for Urban Development Zihuatanejo-Ixtapa 2015-2030]. Zihuatanejo (Mexico): Gobierno de Zihuatanejo. Urban Development Plan. 203 p.

Portugal AB, Lopes-Carvalho F, Oliveira SM, Horta PA, Castro-Nunes JM. 2017. Structure of macroalgal communities on tropical rocky shores inside and outside a marine protected area. Mar Environ Res. 130:150-156. https://doi.org/10.1016/j.marenvres.2017.07.019

Ramírez-López P. 2020. Diagnóstico de la problemática de la contaminación del agua en el estero de las Salinas, Zihuatanejo, Guerrero [Diagnosis of the problem of water pollution in the Salinas estuary, Zihuatanejo, Guerrero]. Morelia (Michoacán, Mexico): Universidad Nacional Autónoma de México. 152 p.

Rodríguez E. 2016. Estacionalidad de la hidrografía y la circulación en el Pacífico tropical frente a México y áreas adyacentes con énfasis en la Corriente Costera Mexicana [Seasonality of hydrography and circulation in the tropical Pacific off Mexico and adjacent areas with emphasis on the Mexican Coastal Current]. Ensenada (Baja California, Mexico): CICESE. 98 p.

Rogers K. 2003. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand. Mar Pollut Bull. 46(7):821-827. https://doi.org/10.1016/S0025-326X(03)00097-3

Sandoval-Coronado BA, López-Gómez NA. 2021. Patrones de abundancia y distribución de macroalgas del arrecife coralino de Ixtapa, Zihuatanejo, Guerrero [Macroalgae abundance and distribution patterns of the coral reef of Isla Ixtapa, Zihuatanejo, Guerrero]. Cien Mar. 25(73):57-71. https://doi.org/10.59673/cym.v25i73

[SECTUR] Secretaría de Turismo. 2014. Estudio de Competitividad Turística del Destino Ixtapa-Zihuatanejo, Gro [Tourist Competitiveness Study of Ixtapa-Zihuatanejo, Gro]. Chilpancingo de los Bravo (Mexico): Universidad de Guerrero, SECTUR. Technical Report. 487 p.

[SEMAR] Secretaría de Marina. 2003. Estudio exploratorio de las condiciones oceanográficas en el espigón de Puerto Mío en la Bahía de Zihuatanejo, Gro. Manzanillo [Exploratory study of the oceanographic conditions in the breakwater of Puerto Mío at the Bay of Zihuatanejo, Gro. Manzanillo]. Colima (Mexico): Instituto Oceanográfico del Pacífico. Technical Report. 69 p.

[SEMAR] Secretaría de Marina. 2021. Información diversa, Nivel de referencia, Planos de mareas referidos al nivel de bajamar media inferior [Diverse information, Reference Level, Tidal planes referring to the lower mean low tide level]: SEMAR; [accessed 2022 Apr 19]. https://oceanografia.semar.gob.mx/telems/CROQUIS%20PACIFICO/37%20ZIHUA24_NBMI.pdf.

Senado de la República. 2015. Punto de acuerdo que exhorta al titular del ejecutivo federal a implementar un proyecto integral de rescate de la Laguna de Las Salinas, zonas aledañas y de la playa principal en Zihuatanejo de Azueta, Guerrero [Resolution urging the leader of the federal executive to implement a comprehensive rescue initiative for Laguna de Las Salinas, its surrounding areas, and the primary beach of Zihuatanejo de Azueta, Guerrero]: Senado de la Republica; [accessed 2022 Apr 19]. https://infosen.senado.gob.mx/sgsp/gaceta/62/3/2015-04-16-1/assets/documentos/DICT_Med_Amb_Laguna_Las_Salinas.pdf.

Taylor WR. 1945. Pacific Marine Algae of the Allan Hancock Expeditions to the Galapagos Islands. Allan Hancock Pacific Expeditions. 12(1):1-528.

Thornber SC, DiMilla P, Nixon SW, McKinney RA. 2008. Natural and anthropogenic nitrogen uptake by bloom-forming macroalgae. Mar Pollut Bull. 56(2):261-269. https://doi.org/10.1016/j.marpolbul.2007.10.031

Umezawa Y, Miyajima T, Yamamuro M, Kayanne H, Koike I. 2002. Fine‐scale mapping of land‐derived nitrogen in coral reefs by δ15N in macroalgae. Limnol Oceanogr. 47(5):1405-1416. https://doi.org/10.4319/lo.2002.47.5.1405

Valiela I, McClelland J, Hauxwell J, Behr P, Hersh D, Foreman K. 1997. Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol Oceanogr. 42(5):1105-1118.

Veiga P, Rubal M, Vieira R, Arenas F, Sousa-Pinto I. 2013. Spatial variability in intertidal macroalgal assemblages on the North Portuguese coast: consistence between species and functional group approaches. Helgol Mar Res. 67(1):191-201. https://doi.org/10.1007/s10152-012-0315-2

Viana IG, Bode A. 2013. Stable nitrogen isotopes in coastal macroalgae: Geographic and anthropogenic variability. Sci Total Environ. 443:887-895. https://doi.org/10.1016/j.scitotenv.2012.11.065

Wang Y, Liu D, Richard P, Di B. 2016. Selection of effective macroalgal species and tracing nitrogen sources on the different part of Yantai coast, China indicated by macroalgal δ15N values. Sci Total Environ. 542(Part A):306-314. https://doi.org/10.1016/j.scitotenv.2015.10.059

Worm B, Lenihan H. 2013. Threats to Marine Ecosystems. Marine Community Ecology and Conservation. Sunderland (USA): Sinauer Associates, Inc. 476 p.

Zhai T, Wang J, Fang Y, Qin Y, Huang L, Chen Y. 2020. Assessing ecological risks caused by human activities in rapid urbanization coastal areas: Towards an integrated approach to determining key areas of terrestrial-oceanic ecosystems preservation and restoration. Sci Total Environ. 708:135153. https://doi.org/10.1016/j.scitotenv.2019.135153