¿Dónde son apropiadas las estrategias de gestión basadas en la resiliencia para los arrecifes de coral? Mapeo de las condiciones ambientales y las tendencias de la cubierta coralina en Guam y Samoa Americana

Contenido principal del artículo

Monica Moritsch
https://orcid.org/0000-0002-3890-1264
Miranda Foley

Resumen

Las estrategias de gestión basadas en la resiliencia están ganando atención como herramientas para la supervivencia y recuperación de corales en condiciones crecientemente estresantes. La priorización de sitios para aplicar estrategias depende de dónde los corales muestran signos de resiliencia y cómo las condiciones ambientales pueden cambiar con el cambio climático. Sintetizamos las condiciones ambientales y tendencias de cobertura de coral en Guam y Samoa Americana utilizando condiciones climáticas actuales y 2 escenarios climáticos futuros: trayectorias de concentración representativas 4.5 y 8.5. Examinamos la superposición espacial entre condiciones ambientales favorables y desfavorables y lugares en los que arrecifes de coral mantuvieron o aumentaron su cobertura en la última década. Ubicaciones que representan 4 combinaciones de las características mencionadas pueden presentar diferentes estrategias de gestión: (1) conservación/restauración de corales robustos, (2) restauración de corales en declive, (3) conservación del material genético de corales robustos/mitigación de factores estresantes y (4) ninguna estrategia clara para corales en declive. En función de estas combinaciones, estimamos áreas potenciales para implementar múltiples acciones de gestión. Bajo condiciones climáticas actuales, la conservación del material genético/mitigación de factores estresantes estaban sobrerrepresentadas en Guam: 23% del área que disminuyó a 15% en escenarios futuros. La restauración del coral estaba inicialmente subrepresentada (0%). En Samoa Americana, la superficie proporcional para cada estrategia fue constante. La restauración del coral estaba sobrerrepresentada con 54-56% del área; la conservación del material genético y mitigación de factores estresantes estaban infrarrepresentadas (9% y 11%, respectivamente). Nuestro enfoque ofrece una forma rápida de evaluar dónde aplicar medidas de gestión con datos agregados sobre grandes extensiones para complementar evaluaciones detalladas y laboriosas de la dinámica de comunidades arrecifales, especialmente si las distintas comunidades coralinas delimitan las unidades de agregación. Estos resultados pueden orientar a gestores para seleccionar sitios ecológicamente adecuados para aplicar estrategias basadas en la resiliencia.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Moritsch, M., & Foley, M. (2023). ¿Dónde son apropiadas las estrategias de gestión basadas en la resiliencia para los arrecifes de coral? Mapeo de las condiciones ambientales y las tendencias de la cubierta coralina en Guam y Samoa Americana. Ciencias Marinas, 49. https://doi.org/10.7773/cm.y2023.3384
Sección
Artículo de investigación

Métrica

Citas

Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrão EA, de Clerck O, Tittensor D. 2018. Bio‐ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Global Ecol Biogeogr 27:277-284. DOI: https://doi.org/10.1111/geb.12693

Ateweberhan M, Feary DA, Keshavmurthy S, Chen A, Schleyer MH, Sheppard CRC. 2013. Climate Change Impacts on coral reefs: synergies with local effects, possibilities for acclimation, and management implications. Mar Pollut Bull. 74(2):526-539. https://doi.org/10.1016/j.marpolbul.2013.06.011 DOI: https://doi.org/10.1016/j.marpolbul.2013.06.011

Aucan J. 2018. Effects of Climate Change on Sea Levels and Inundation Relevant to the Pacific Islands. Pacific Marine Climate Change Report Card: Science Review 2018:43-49.

Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR. 2011. The value of estuarine and coastal ecosystem services. Ecol Monogr. 81(2):169-193. https://doi.org/10.1890/10-1510.1 DOI: https://doi.org/10.1890/10-1510.1

Bastazini CV, Munduruca JFV, Rocha PLB, Napoli MF. 2007. Which environmental variables better explain changes in anuran community composition? A case Study in the Restinga of Mata de São João, Bahia, Brazil. Herpetologica. 63(4):459-471. https://doi.org/10.1655/0018-0831(2007)63[459:WEVBEC]2.0.CO;2 DOI: https://doi.org/10.1655/0018-0831(2007)63[459:WEVBEC]2.0.CO;2

Bessell-Browne P, Negri AP, Fisher R, Clode PL, Duckworth A, Jones R. 2017. Impacts of turbidity on corals: the relative importance of light limitation and suspended sediments. Mar Pollut Bull. 117(1–2):161-170. https://doi.org/10.1016/j.marpolbul.2017.01.050 DOI: https://doi.org/10.1016/j.marpolbul.2017.01.050

Bruno JF, Petes LE, Harvell CD, Hettinger A. 2003. Nutrient enrichment can increase the severity of coral diseases: effect of nutrients on coral disease severity. Ecol Lett. 6(12):1056-1061. https://doi.org/10.1046/j.1461-0248.2003.00544.x DOI: https://doi.org/10.1046/j.1461-0248.2003.00544.x

Chung AE, Wedding LM, Green AL, Friedlander AM, Goldberg G, Meadows A, Hixon MA. 2019. Building coral reef resilience through spatial herbivore management. Front Mar Sci. 6:98. https://doi.org/10.3389/fmars.2019.00098 DOI: https://doi.org/10.3389/fmars.2019.00098

Chung AE, Wedding LM, Meadows A, Moritsch MM, Donovan MK, Gove J, Hunter C. 2019. Prioritizing reef resilience through spatial planning following a mass coral bleaching event. Coral Reefs. 38(4):837-850. https://doi.org/10.1007/s00338-019-01812-w DOI: https://doi.org/10.1007/s00338-019-01812-w

Comeros-Raynal MT, Lawrence A, Sudek M, Vaeoso M, McGuire K, Regis J, Houk P. 2019. Applying a ridge-to-reef framework to support watershed, water quality, and community-based fisheries management in American Samoa. Coral Reefs. 38(3):505-520. https://doi.org/10.1007/s00338-019-01806-8 DOI: https://doi.org/10.1007/s00338-019-01806-8

Comte A, Pendleton LH. 2018. Management strategies for coral reefs and people under global environmental change: 25 years of scientific research. J Environ Manage. 209:462-474. https://doi.org/10.1016/j.jenvman.2017.12.051 DOI: https://doi.org/10.1016/j.jenvman.2017.12.051

Dobson G, Johnson I, Kowal V, Rhodes K, Lussier B, Byler K. 2021. Guam Costal Resilience Assessment. Prepared for the National Fish and Wildlife Federation. Ashville (NC): University of North Carolina Asheville National Environmental Modeling and Analysis. 63 p.

Fabricius KE. 2005. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull. 50(2):125-146. https://doi.org/10.1016/j.marpolbul.2004.11.028 DOI: https://doi.org/10.1016/j.marpolbul.2004.11.028

Field ME, Ogston AS, Storlazzi CD. 2011. Rising sea level may cause decline of fringing coral reefs. Trans Am Geophys Union. 92(33):273-274. https://doi.org/10.1029/2011EO330001 DOI: https://doi.org/10.1029/2011EO330001

Foo SA, Asner GP. 2020. Sea surface temperature in coral reef restoration outcomes. Environ Res Lett. 15(7):074045. https://doi.org/10.1088/1748-9326/ab7dfa DOI: https://doi.org/10.1088/1748-9326/ab7dfa

Fox MD, Nelson CE, Oliver TA, Quinlan ZA, Remple K, Glanz J, Smith JE, Putnam HM. 2021. Differential resistance and acclimation of two coral species to chronic nutrient enrichment reflect life‐history traits. Funct Ecol. 35(5):1081-1093. https://doi.org/10.1111/1365-2435.13780 DOI: https://doi.org/10.1111/1365-2435.13780

Graham NAJ, Bellwood DR, Cinner JE, Hughes TP, Norström AV, Nyström M. 2013. Managing resilience to reverse phase shifts in coral reefs. Front Ecol Environ. 11(10):541-548. https://doi.org/10.1890/120305 DOI: https://doi.org/10.1890/120305

Guest JR, Baird AH, Maynard JA, Muttaqin E, Edwards AJ, Campbell SJ, Yewdall K, Affendi YA, Chou LM. 2012. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS ONE. 7(3):e33353. https://doi.org/10.1371/journal.pone.0033353 DOI: https://doi.org/10.1371/journal.pone.0033353

Halpern BS, Frazier M, Potapenko J, Casey KS, Koenig K, Longo C, Lowndes JS, Rockwood RC, Selig ER, Selkoe KA, Walbridge S. 2015. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat Commun 6:7615 DOI: https://doi.org/10.1038/ncomms8615

Heron SF, Maynard JA, van Hooidonk R, Eakin CM. 2016. Warming trends and bleaching stress of the world’s coral reefs 1985–2012. Sci Rep. 6(1):38402. https://doi.org/10.1038/srep38402 DOI: https://doi.org/10.1038/srep38402

Holling CS. 1973. Resilience and stability of ecological systems. Annu Rev Ecol Syst. 4(1):1-23. https://doi.org/10.1146/annurev.es.04.110173.000245 DOI: https://doi.org/10.1146/annurev.es.04.110173.000245

Houk P, Benavente D, Iguel J, Johnson S, Okano R. 2014. Coral reef disturbance and recovery dynamics differ across gradients of localized stressors in the Mariana Islands. PLoS ONE. 9(8):e105731. https://doi.org/10.1371/journal.pone.0105731 DOI: https://doi.org/10.1371/journal.pone.0105731

Houk P, Didonato G, Iguel J, van Woesik R. 2005. Assessing the effects of non-point source pollution on American Samoa’s coral reef communities. Environ Monit Assess. 107(1–3):11-27.https://doi.org/10.1007/s10661-005-2019-4 DOI: https://doi.org/10.1007/s10661-005-2019-4

Jales-Cavalcanti M, do Nascimento-Feitosa FA, Koening ML, Flores-Montes MJ, de Araújo-Filho MC, Araújo-da Silva R. 2015. Phytoplankton biomass dynamics and environmental variables around the Rocas Atoll Biological Reserve, South Atlantic. Brazilian J Oceanogr. 63(4):443-454.

https://doi.org/10.1590/S1679-87592015093906304 DOI: https://doi.org/10.1590/S1679-87592015093906304

Jenness J, Houk P. 2014. UOGML Wave Energy ArcGIS Extension. Mangilao: University of Guam Marine Laboratory.

Kenneth RNA, Marshall PA, Abdulla A, Beeden R, Bergh C, Black R, Eakin CM, Game ET, Gooch M, Graham NAJ. 2015. Operationalizing Resilience for Adaptive Coral Reef Management under Global Environmental Change. Global Change Biol. 21(1):48-61. https://doi.org/10.1111/gcb.12700 DOI: https://doi.org/10.1111/gcb.12700

Kottermair M. 2012. Piti-Asan Watershed Management Plan. Mangilao (Guam): Water and Environmental Research Institute (WERI) of the Western Pacific-University of Guam. Technical Report No.: 138.

Krasting JP, John JG, Blanton C, McHugh C, Nikonov S, Radhakrishnan A, Rand K, Zadeh NT, Balaji V, Durachta J, et al. 2018. NOAA-GFDL GFDL-ESM4 Model Output Prepared for CMIP6 CMIP: Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1407

Lê S, Josse J, Husson F. 2008. FactoMineR: A Package for Multivariate Analysis. J Stat Softw, 25(1):1-18. https://doi.org/10.18637/jss.v025.i01. DOI: https://doi.org/10.18637/jss.v025.i01

Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K. 2023. cluster: Cluster Analysis Basics and Extensions. R package v. 2.1.5.

Maynard J, Johnson S, Burdick DR, Jarrett A, Gault J, Idechong J, Miller R, Williams GJ, Heron SF, Raymundo L. 2018. Coral reef resilience to climate change in Guam in 2016. NOAA Technical Memorandum CRCP. 29:1-51. https://doi.org/10.7289/V5/TM-CRCP-29

McClanahan TR, Ateweberhan M, Muhando CA, Maina J, Mohammed MS. 2007. Effects of climate and seawater temperature variation on coral bleaching and mortality. Ecol Monogr. 77(4):503-525. https://doi.org/10.1890/06-1182.1 DOI: https://doi.org/10.1890/06-1182.1

McCowan DM, Pratchett MS, Baird AH. 2012. Bleaching susceptibility and mortality among corals with differing growth forms. Proceedings of the 12th International Coral Reef Symposium; 9–13 Jul 2012, vol. 9. Cairns (Australia). 6 p.

Mcleod E, Anthony KRN, Mumby PJ, Maynard J, Beeden R, Graham NAJ, Heron SF, Hoegh-Guldberg O, Jupiter S, MacGowan P, et al. 2019. The future of resilience-based management in coral reef ecosystems. J Environ Manage. 233:291-301. https://doi.org/10.1016/j.jenvman.2018.11.034 DOI: https://doi.org/10.1016/j.jenvman.2018.11.034

Moilanen A, Runge MC, Elith J, Tyre A, Carmel Y, Fegraus E, Wintle BA, Burgman M, Ben-Haim Y. 2006. Planning for robust reserve networks using uncertainty analysis. Ecol Modell. 199(1):115-124. https://doi.org/10.1016/j.ecolmodel.2006.07.004 DOI: https://doi.org/10.1016/j.ecolmodel.2006.07.004

Moritsch MM. 2018. Ecological causes and consequences of sea star wasting syndrome on the Pacific coast [dissertation]. [Santa Cruz (CA)]: Univesity of California Santa Cruz. 184 p.

Moritsch MM. 2021. Favorability of environmental conditions for coral reefs in Guam and American Samoa under multiple climate scenarios: U.S. Geological Survey data release. https://doi.org/10.5066/P9N32V3M

Nalley EM, Tuttle LJ, Barkman AL, Conklin EE, Wulstein DM, Richmond RH, Donahue MJ. 2021. Water quality thresholds for coastal contaminant impacts on corals: a systematic review and meta-analysis. Sci Total Environ. 794:148632. https://doi.org/10.1016/j.scitotenv.2021.148632 DOI: https://doi.org/10.1016/j.scitotenv.2021.148632

NASA Ocean Biology Distributed Active Archive Center (DAAC). 2020. Earth Science Data and Information System (ESDIS): NASA; [accessed 2021 May 03]. https://oceandata.sci.gsfc.nasa.gov/directaccess/MODIS-Aqua/.

Neuman KK, Stein RW, Eyster CR, Gardali T. 2019. Climate-Smart Conservation of Beaches and Dunes for Western Snowy Plover Recovery in Monterey Bay, California. Petaluma (CA): Point Blue Conservation Science. Report No.: F15AC00642.

NOAA. 2018. US Coral Reef Monitoring Data Summary. NOAA Technical Memorandum CRCP. 31:1-224. https://doi.org/10.25923/G0V0-NM61

NOAA. 2020. Coral Reef Watch Version 3.1. Daily Global 5 km Satellite Coral Bleaching Degree Heating Week Product, 1985–2020. College Park (Maryland, USA): NOAA Coral Reef Watch; [accessed 2021 Jan 10]. https://coralreefwatch.noaa.gov/product/5km/index_5km_composite.php.

NOAA Digital Coast. 2017. Digital Coast Sea Level Rise Viewer. 1-8. https://coast.noaa.gov/slr/.

Norström AV, Nyström M, Lokrantz J, Folke C. 2009. Alternative states on coral reefs: beyond coral–macroalgal phase shifts. Mar Ecol Prog Ser. 376:295-306. https://doi.org/10.3354/meps07815 DOI: https://doi.org/10.3354/meps07815

Oliver TA, Barkley H, Couch C, Kindinger T, Williams I. 2020b. Downscaling ecological trends from the spatially randomized datasets of the National Coral Reef Monitoring Program. NOAA Technical Memorandum NMFS-PIFSC.106:59. https://doi.org/10.25923/2FEF-8R42

Oliver TA, Danika K, Hospital J, Maynard J, Dieter T. 2020a. Coral Reef Resilience and Social Vulnerability to Climate Change: American Samoa. Honolulu (HI): NOAA Pacific Islands Fisheries Science Center.

Oliver TA, Hospital J, Brainard R. 2020c. Spatial prioritization under Resilience Based Management: evaluating trade-offs among prioritization strategies. NOAA Technical Memorandum NMFS-PIFSC. 105:47. https://doi.org.10.25923/XDF2-T259

Oliver TA, Palumbi SR. 2011. Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs. 30(2):429-440. https://doi.org/10.1007/s00338-011-0721-y DOI: https://doi.org/10.1007/s00338-011-0721-y

[PacIOOS] Pacific Islands Ocean Observing System. 2022. Projects: Coral Reef Resilience in Guam and American Samoa; [accessed 2022 February 1]. http://www.pacioos.hawaii.edu/projects/coral-resilience-guam-amsam/.

[PIFSC] NOAA Pacific Islands Fisheries Science Center, [CRCP] NOAA Coral Reef Conservation Program, and [ESA-CCI] European Space Agency Climate Change Initiative. 2021a. Chlorophyll-a Long-term Mean, 1998-2018. American Samoa: [PacIOOS] Pacific Islands Ocean Observing System.

[PIFSC] NOAA Pacific Islands Fisheries Science Center, [CRCP] NOAA Coral Reef Conservation Program, and [ESA-CCI] European Space Agency Climate Change Initiative. 2021b. Turbidity (Kd490) Long-term Mean, 1998-2018. American Samoa: [PacIOOS] Pacific Islands Ocean Observing System.

[PIFSC] NOAA Pacific Islands Fisheries Science Center, [CRCP] NOAA Coral Reef Conservation Program, and [NCEP] NOAA National Centers for Environmental Prediction. 2021d. Wave Power Long-term Mean, 2002-2012. American Samoa: [PacIOOS] Pacific Islands Ocean Observing System.

[PIFSC] NOAA Pacific Islands Fisheries Science Center, [CRCP] NOAA Coral Reef Conservation Program, and [OBPG] NASA Ocean Biology Processing Group. 2021c. Photosynthetically Active Radiation (PAR) Long-term Mean, 2003-2018. American Samoa: [PacIOOS] Pacific Islands Ocean Observing System.

Polasky S, Carpenter SR, Folke C, Keeler B. 2011. Decision-making under great uncertainty: environmental management in an era of global change. Trends Ecol Evol. 26(8):398-404. https://doi.org/10.1016/j.tree.2011.04.007 DOI: https://doi.org/10.1016/j.tree.2011.04.007

Pratchett M, Heron S, Mellin C, Cumming G. 2009. Recurrent mass-bleaching and the potential for ecosystem collapse on Australia’s Great Barrier Reef. In: Canadell J, Jackson R (eds.), Ecosystem Collapse and Climate Change. Vol. 241, Ecological Studies (Analysis and Synthesis). Cham (Switzerland): Springer Nature. p. 1492-1499.

Prouty NG, Storlazzi CD, McCutcheon AL, Jenson JW. 2014. Historic impact of watershed change and sedimentation to reefs along west-central Guam. Coral Reefs. 33(3):733-749. https://doi.org/10.1007/s00338-014-1166-x DOI: https://doi.org/10.1007/s00338-014-1166-x

Raj KD, Aeby GS, Mathews G, Williams GJ, Caldwell JM, Laju RL, Bharath MS, Kumar PD, Arasamuthu A, Asir NGG, Wedding LM, Davies AJ, Moritsch MM, Patterson-Edward JK. 2021. Coral reef resilience differs among islands within the Gulf of Mannar, southeast India, following successive coral bleaching events. Coral Reefs. 40(4):1029-1044. https://doi.org/10.1007/s00338-021-02102-0 DOI: https://doi.org/10.1007/s00338-021-02102-0

Raymundo LJ, Burdick D, Hoot WC, Miller RM, Brown V, Reynolds T, Gault J, Idechong J, Fifer J, Williams A. 2019. Successive bleaching events cause mass coral mortality in Guam, Micronesia. Coral Reefs. 38(4):677-700. https://doi.org/10.1007/s00338-019-01836-2 DOI: https://doi.org/10.1007/s00338-019-01836-2

Raymundo LJ, Burdick D, Lapacek V, Miller R, Brown V. 2017. Anomalous temperatures and extreme tides: Guam staghorn Acropora succumb to a double threat. Mar Ecol Prog Ser. 564:47-55. https://doi.org/10.3354/meps12005 DOI: https://doi.org/10.3354/meps12005

R Core Team. 2021. R: A Language and Environment for Statistical Computing. Vienna (Austria): R Foundation for Statistical Computing. https://www.R-project.org.

Reguero BG, Storlazzi CD, Gibbs AE, Shope JB, Cole AD, Cumming KA, Beck MW. 2021. The value of US coral reefs for flood risk reduction. Nature Sustainability. 4:688-698. https://doi.org/10.1038/s41893-021-00706-6 DOI: https://doi.org/10.1038/s41893-021-00706-6

Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P. 2011. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change. 109(1–2):33-57. https://doi.org/10.1007/s10584-011-0149-y DOI: https://doi.org/10.1007/s10584-011-0149-y

Risk MJ, Edinger E. 2011. Impacts of sediment on coral reefs. In: Hopley D (ed.), Encyclopedia of Modern Coral Reefs, Encyclopedia of Earth Sciences Series. Dordrecht (Netherlands): Springer Netherlands. p. 575-586. DOI: https://doi.org/10.1007/978-90-481-2639-2_25

Safaie A, Silbiger NJ, McClanahan TR, Pawlak G, Barshis DJ, Hench JL, Rogers JS, Williams GJ, Davis KA. 2018. High frequency temperature variability reduces the risk of coral bleaching. Nat Commun. 9(1):1671. https://doi.org/10.1038/s41467-018-04074-2 DOI: https://doi.org/10.1038/s41467-018-04074-2

Schoepf V, Jung MU, McCulloch MT, White NE, Stat M, Thomas L. 2020. Thermally variable, macrotidal reef habitats promote rapid recovery from mass coral bleaching. Front Mar Sci. 7:245.https://doi.org/10.3389/fmars.2020.00245 DOI: https://doi.org/10.3389/fmars.2020.00245

Shuler CK, Comeros-Raynal M. 2020. Ridge to reef management implications for the development of an open-source dissolved inorganic nitrogen-loading model in American Samoa. Environ Manage. 66(3):498-515. https://doi.org/10.1007/s00267-020-01314-4 DOI: https://doi.org/10.1007/s00267-020-01314-4

Smith JE, Hunter CL, Smith CM. 2010. The effects of top–down versus bottom–up control on benthic coral reef community structure. Oecologia. 163(2):497-507. https://doi.org/10.1007/s00442-009-1546-z DOI: https://doi.org/10.1007/s00442-009-1546-z

Soil Survey Staff. 2020. Gridded Soil Survey Geographic (gSSURGO) Database for American Samoa and Guam; [accessed 2021 January 06]. https://gdg.sc.egov.usda.gov/.

Storlazzi CD, Elias E, Field ME, Presto MK. 2011. Numerical modeling of the impact of sea-level rise on fringing coral reef hydrodynamics and sediment transport. Coral Reefs. 30(S1):83-96. https://doi.org/10.1007/s00338-011-0723-9 DOI: https://doi.org/10.1007/s00338-011-0723-9

Stuart-Smith RD, Brown CJ, Ceccarelli DM, Edgar GJ. 2018. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature. 560(7716):92-96. https://doi.org/10.1038/s41586-018-0359-9 DOI: https://doi.org/10.1038/s41586-018-0359-9

Swanson DW, Bailey H, Schumacher B, Ferguson M, Vargas-Ángel B. 2018. Ecosystem Sciences Division standard operating procedures: Data collection for rapid ecological assessment benthic surveys. NOAA Technical Memorandum NMFS-PIFSC-71:63.

Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise MA, Clarke LE, et al. 2011. RCP4.5: a pathway for stabilization of radiative forcing by 2100. Climatic Change. 109(1–2):77-94. https://doi.org/10.1007/s10584-011-0151-4 DOI: https://doi.org/10.1007/s10584-011-0151-4

[UNEP] United Nations Environment Programme. 2017. Coral Bleaching Futures: Downscaled Projections of Bleaching Conditions for the World’s Coral Reefs, Implications of Climate Policy and Management Responses. Nairobi (Kenya): United Nations Environment Programme. 71.

Van Hooidonk R, Maynard JA, Manzello D, Planes S. 2014. Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Global Change Biol. 20(1):103-112. https://doi.org/10.1111/gcb.12394 DOI: https://doi.org/10.1111/gcb.12394

Van Hooidonk R, Maynard J, Tamelander J, Gove J, Ahmadia G, Raymundo L, Williams G, Heron SF, Planes S. 2016. Local-scale projections of coral reef futures and implications of the Paris Agreement. Sci Rep. 6(1):39666. https://doi.org/10.1038/srep39666 DOI: https://doi.org/10.1038/srep39666

Van Woesik R, Sakai K, Ganase A, Loya Y. 2011. Revisiting the winners and the losers a decade after coral bleaching. Mar Ecol Prog Ser. 434:67-76. https://doi.org/10.3354/meps09203 DOI: https://doi.org/10.3354/meps09203

Weber M, de Beer D, Lott C, Polerecky L, Kohls K, Abed RMM, Ferdelman TG, Fabricius KE. 2012. Mechanisms of damage to corals exposed to sedimentation. Proc Natl Acad Sci. 109(24). https://doi.org/10.1073/pnas.1100715109 DOI: https://doi.org/10.1073/pnas.1100715109

[WERI] Water and Environmental Research Institute of the Western Pacific. 2016. Watersheds, Major – Southern Guam. Dataset. Distributed by Pacific Islands Ocean Observing System; [accessed 1 August 2023].

Williams G, Maynard J. 2019. Human and natural drivers of coral reef resilience to climate-induced coral bleaching in Guam; identifying potential climate refugia. Final report for Grant No. NA18NOS4820106.

Wright DJ. 2016. Watersheds, Minor – Tutuila, American Samoa. Dataset. Distributed by Pacific Islands Ocean Observing System; [accessed 2022 August 01].

Wright DJ. 2016. Watersheds, Major – Manua, American Samoa. Dataset. Distributed by Pacific Islands Ocean Observing System; [accessed 2022 August 01].