A statistical approach for modeling shallow (<200 m) temperature profiles in the Pacific Ocean off northwestern Mexico
Main Article Content
Abstract
Temperature is perhaps the most important seawater property. It is a measure of the energy content in the ocean and it affects the metabolic rates, distribution, and abundance of species that are important from the economic and ecological points of view. Satellite-derived oceanographic data have been widely used to assess spatiotemporal variations of sea surface temperature on broad scales; satellites, however, are unable to reach subsurface levels, and obtaining reliable subsurface water temperature data is achieved by either numerical modeling or direct observations, the latter representing a very high-cost alternative. In this paper, a method for modeling temperature profiles is presented. A generalized additive mixed model (GAMM) with a gamma error distribution and an inverse link function was used to model shallow (200 m) temperature profiles in the Pacific Ocean off northwestern Mexico. The dataset included 656 profiles that were linearly interpolated at depth, which resulted in 127,595 observations. The database covered an area from 18.5º to 25.8ºN and from –114.5º to –105.9ºW in a time span from June 2007 to November 2016. The model included temperature as response variable; depth, surface dynamic topography, wind stress curl, latitude, longitude, and the Oceanic Niño Index as covariates; and month as random effect. The final model explained 86% of the total deviance of the dataset used to fit the GAMM. Although important deviations between the observations and the predictions of the model were observed, the results of the validation process and of predictions made on an independent dataset (correlation of observed vs. predicted temperature, 0.93; root-mean-square error, 1.5 ºC) were comparable to the results obtained with more complex modeling techniques, suggesting that this statistical approach is a valuable tool for modeling oceanographic data.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under a Creative Commons Attribution 4.0 License, which allows you to share and adapt the work, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Figures, tables and other elements in the article are included in the article’s CC BY 4.0 license, unless otherwise indicated. The journal title is protected by copyrights and not subject to this license. Full license deed can be viewed here.
Metrics
References
Akbari E, Alavipanah SK, Jeihouni M, Hajeb M, Haase D, Alavipanah S. 2017. A review of Ocean/Sea subsurface water temperature studies from remote sensing and non-remote sensing methods. Water. 9(12):936.
https://doi.org/10.3390/w9120936
Álvarez-Borrego S. 1983. Gulf of California. In: Ketchum BH (ed.), Estuaries and enclosed seas. Amsterdam (Netherlands): Elsevier. p. 427–449.
Bond NA, Cronin MF, Freeland H, Mantua N. 2015. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys Res Lett. 42(9):3414–3420.
https://doi.org/10.1002/2015GL063306
Burnham KP, Anderson DR. 2002. Model selection and multimodel inference: a practical and information-theoretic approach. 2nd ed. Berlin (Germany): Springer-Verlag. 488 p.
https://doi.org/10.1007/b97636
Castro R, Durazo R, Mascarenhas A, Collins CA, Trasviña A. 2006. Thermohaline variability and geostrophic circulation in the southern portion of the Gulf of California. Deep-Sea Res PT I. 53(1):188–200.
https://doi.org/10.1016/j.dsr.2005.09.010
Castro R, Lavín MF, Ripa P. 1994. Seasonal heat balance in the Gulf of California. J Geophys Res. 99(C2):3249–3261.
https://doi.org/10.1029/93JC02861
Collins M, An S, Cai W, Ganachaud A, Guilyardi E, Jin F, Jochum M, Lengiagne M, Power S, Timmermann A, et al. 2010. The impact of global warming on the tropical Pacific Ocean and El Niño. Nat Geosci. 3:391–397.
https://doi.org/10.1038/ngeo868
Deng Z, Tang Y, Freeland HJ. 2011. Evaluation of several error schemes in the EnKF assimilation: Applied to Argo profiles in the Pacific Ocean. J Geophys Res. 116(C9):C09027.
https://doi.org/10.1029/2011JC006942
Domokos R, Seki MP, Polovina JJ, Hawn DR. 2007. Oceanographic investigation of the American Samoa albacore (Thunnus alalunga) habitat and longline fishing grounds. Fish Oceanogr. 16(6):555–572.
https://doi.org/10.1111/j.1365-2419.2007.00451.x
Dorantes-Gilardi M. 2018. Modelación numérica de variables biogeoquímicas en la región sur de la Corriente de California durante el período anómalo cálido 2013–2015 [MSc thesis]. [Ensenada (Mexico)]: Centro de Investigación Científica y Educación Superior de Ensenada. 64 p.
Dorantes-Gilardi M, Rivas D. 2019. Effects of the 2013–2016 Northeast Pacific warm anomaly on physical and biogeochemical variables off northwestern Baja California, derived from a numerical NPZD model. Deep-Sea Res PT II. 169–170:104668.
https://doi.org/10.1016/j.dsr2.2019.104668
Emmett RL, Brodeur RD, Miller TW, Pool SS, Krutzikowsky GK, Bentley PJ, McCrae J. 2005. Pacific sardine (Sardinops sagax) abundance, distribution, and ecological relationships in the Pacific Northwest. CalCOFI Rep. 46:122–143.
Fangohr S, Kent EC. 2012. An estimate of structural uncertainty in QuikSCAT wind vector retrievals. J Appl Meteorol Clim. 51(5):954–961.
https://doi.org/10.1175/JAMC-D-11-0183.1
Farrell ER, Boustany AM, Halpin PN, Hammond DL. 2014. Dolphinfish (Coryphaena hippurus) distribution in relation to biophysical ocean conditions in the northwest Atlantic. Fish Res. 151:177–190.
https://doi.org/10.1016/j.fishres.2013.11.014
Fiedler PC. 1988. Surface manifestations of subsurface thermal structure in the California Current. J Geophys Res. 93(C5):4975– 4983.
https://doi.org/10.1029/JC093iC05p04975
Fiedler PC, Talley LD. 2006. Hydrography of the eastern tropical Pacific: A Review. Prog Oceanogr. 69(2–4):143–180.
https://doi.org/10.1016/j.pocean.2006.03.008
Godínez VM, Beier E, Lavín MF, Kurczyn JA. 2010. Circulation at the entrance of the Gulf of California from satellite altimeter and hydrographic observations. J Geophys Res. 115(C4):C04007.
https://doi.org/10.1029/2009JC005705
Gómez-Ocampo E, Gaxiola-Castro G, Durazo R. 2017. Approach for estimating the dynamic physical thresholds of phytoplankton production and biomass in the tropical-subtropical Pacific Ocean. J Geophys Res–Biogeo. 122(6):1385–1403.
https://doi.org/10.1002/2016JG003636
Holland KN, Brill RW, Chang RKC. 1990. Horizontal and vertical movements of blue marlin captured and released using sportfishing gear. Fish Bull. 88(2):397–402.
Jones MR, Blenkinsop S, Fowler HJ, Stephenson DB, Kilsby CG. 2013. Generalized additive modelling of daily precipitation extremes and their climatic drivers. Boulder (CO): National Center for Atmospheric Research. 35 p. NCAR Technical Notes No. NCAR/TN-501+STR.
https://doi.org/10.5065/D68P5XH3
Kelley D, Richards C. 2017. oce: Analysis of oceanographic data. [place unknown]: CRAN R project; [accessed 2020 October 20]. https://CRAN.R-project.org/package=oce
Kessler WS. 2006. The circulation of the eastern tropical Pacific: A review. Progr Oceanogr. 69(2–4):181–217.
https://doi.org/10.1016/j.pocean.2006.03.009
Large WG, Pond S. 1981. Open ocean momentum flux measurements in moderate to strong winds. J Phys Oceanogr. 11(3):324–336.
https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2. 0.CO;2
Lavín MF, Marinone SG. 2003. An overview of the physical oceanography of the Gulf of California. In: Velasco-Fuentes OU, Sheinbaum J, Ochoa J (eds.), Nonlinear processes in geophysical fluid dynamics. Dordrecht (Netherlands): Springer. p. 173–204.
https://doi.org/10.1007/978-94-010-0074-1_11
Lynn RJ, Simpson JJ. 1987. The California Current system: The seasonal variability of its physical characteristics. J Geophys Res. 92(C12):12947–12966.
https://doi.org/10.1029/jc092ic12p12947
Marín-Enríquez E, Seoane J, Muhlia-Melo A. 2018. Environmental modeling of the occurrence of dolphinfish (Coryphaena spp.) in the Pacific Ocean off Mexico reveals seasonality in abundance, hot spots and migration patterns. Fish Oceanogr. 27(1):28–40.
https://doi.org/10.1111/fog.12231
Martínez-Rincón RO, Ortega-García S, Vaca-Rodríguez JG. 2012. Comparative performance of generalized additive models and boosted regression trees for statistical modeling of incidental catch of wahoo (Acanthocybium solandri) in the Mexican tuna purse-seine fishery. Ecol Model. 233:20–25.
https://doi.org/10.1016/j.ecolmodel.2012.03.006
Maunder MN, Punt AE. 2004. Standardizing catch and effort data: a review of recent approaches. Fish Res. 70(2–3):141–159.
https://doi.org/10.1016/j.fishres.2004.08.002
R Core Team. 2016. R: A language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing; [accessed 2019 March 30]. htpps://www.R-project.org.
Richards RG, Tomlinson R, Chaloupka M. 2010. Using generalized additive models to assess, explore and unify environmental monitoring datasets. In: Swayne DA, Yang W, Voinov AA, Rizzoli A, Filatova T (eds.), iEMSs 2010: Modelling for Environment’s Sake. Proceedings of the Fifth Biennial Conference of the International Environmental Modelling and Software Society; 5–8 Jul 2010 Ottawa, Ontario, Canada. Canada: International Environmental Modelling and Software Society. 8 p.
Simmons RA. 2017. ERDDAP. Monterey (CA): National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southwest Fisheries Science Center Environmental Research Division; [accessed 2019 July 4]. https://coastwatch. pfeg.noaa.gov/erddap
Su NJ, Sun CL, Punt AE, Yeh SZ. 2008. Environmental and spatial effects on the distribution of blue marlin (Makaira nigricans) as inferred from data for longline fisheries in the Pacific Ocean. Fish Oceanogr. 17(6):432–445.
https://doi.org/10.1111/j.1365-2419.2008.00491.x
Torres-Orozco E. 1993. Análisis volumétrico de las masas de agua del Golfo de California [MSc thesis]. [Ensenada (Mexico)]: Centro de Investigación Científica y de Educación Superior de Ensenada. 80 p.
Torres-Orozco E, Trasviña A, Muhlia-Melo A, Ortega-García S. 2005. Dinámica de mesoescala y capturas de atún aleta amarilla en el Pacífico mexicano = Mesoscale dynamics and yellowfin tuna catches in the Mexican Pacific. Cienc Mar. 31(4):671–683.
https://doi.org/10.7773/cm.v31i4.33
Wood SN. 2006. Generalized additive models: An introduction with R. Boca Raton (FL): Chapman and Hall/CRC. 410 p.
Yang J, Gong P, Fu R, Zhang M, Chen J, Liang S, Xu B, Shi J, Dickinson R. 2013. The role of satellite remote sensing in climate change studies. Nat Clim Chang. 3:875–883.
https://doi.org/10.1038/nclimate1908
Yang L, Qin G, Zhao N, Wang C, Song G. 2012. Using a Generalized Additive Model with autoregressive terms to study the effects of daily temperature on mortality. BMC Med Res Methodol. 12:165. https://doi.org/10.1186/1471-2288-12-165
Zainuddin M, Saitoh K, Saitoh S. 2008. Albacore (Thunnus alalunga) fishing ground in relation to oceanographic conditions in the western North Pacific Ocean using remotely sensed satellite data. Fish Oceanogr. 17(2):61–73.
https://doi.org/10.1111/j.1365-2419.2008.00461.x
Zamudio L, Hogan P, Metzger EJ. 2008. Summer generation of the Southern Gulf of California eddy train. J Geophys Res. 113(C6):C06020.
https://doi.org/10.1029/2007JC004467
Zaytsev O, Cervantes-Duarte R, Montante O, Gallegos-García A. 2003. Coastal upwelling activity on the Pacific shelf of the Baja California Peninsula. J Oceanogr. 59(4):498–502.
https://doi.org/10.1023/A:1025544700632
Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM. 2009. Mixed effects models and Extensions in Ecology with R. New York: Springer-Verlag. 574 p.