Internal bioerosion in massive corals associated with reef communities in the northeastern tropical Pacific: The effect of intrinsic and extrinsic factors

Main Article Content

Jazmín Arleth Cosain-Díaz
José de Jesús Adolfo Tortolero-Langarica
https://orcid.org/0000-0001-8857-5789
Alma Paola Rodríguez-Troncoso
https://orcid.org/0000-0001-6243-7679
Eric Bautista-Guerrero
https://orcid.org/0000-0002-4975-1767
Diana María Antuna-Roman
Patricia Salazar-Silva
https://orcid.org/0000-0002-3655-7420
Amílcar Leví Cupul-Magaña
https://orcid.org/0000-0002-6455-1253

Abstract

The development and maintenance of the physical structure of coral reefs depends on the balance between production (accretion) and removal (erosion) of CaCO3 produced mainly by reef-building corals. This calcareous material may be removed from the coral skeleton by means of physical, chemical, or biological agents, with the latter being the most influential. Despite being important, bioerosion studies on coral reefs from the Pacific coast of Mexico are scarce. In this study, we determined the volume and percentage of CaCO3 removed through bioerosion from the main massive coral species, Pavona gigantea, Porites lobata, and Porites panamensis, in the Islas Marietas and Isla Isabel National Parks (Mexico). We also evaluated the effect of extrinsic (morphology, sex, and age) and intrinsic (depth and location) factors on bioerosion. The buoyant weight technique was used to estimate internal bioerosion parameters and CaCO3 skeletal density. At the species level, P. gigantea showed volume of bioerosion values of 71.31 ± 32.35 cm3 (27.28 ± 18.05% of internal bioerosion); Po. lobata, 26.60 ± 24.87 cm3 (16.87 ± 16.31%); and Po. panamensis, 29.6 ± 14.61 cm3 (31.127 ± 29.43%). At the genus level, Pavona exhibited the highest bioerosion and skeletal density values (1.61 g·cm–3). Regarding morphology, bioerosion was higher in massive corals, but regarding age, it was higher in adult colonies (10–26 years). Islas Marietas National Park showed the highest values for volume and percentage of bioerosion. The results suggest that coral reefs on the Pacific coast of central Mexico are undergoing a high degree of inconspicuous erosion by internal bioeroders and its variability is controlled by both intrinsic and extrinsic factors. If this effect continues to rise, it could threaten the long-term maintenance of coral communities, modifying the carbonate flux equilibrium and the ecological functionality of coral reef ecosystems.

Downloads

Download data is not yet available.

Article Details

How to Cite
Cosain-Díaz, J. A., Tortolero-Langarica, J. de J. A., Rodríguez-Troncoso, A. P., Bautista-Guerrero, E., Antuna-Roman, D. M., Salazar-Silva, P., & Cupul-Magaña, A. L. (2021). Internal bioerosion in massive corals associated with reef communities in the northeastern tropical Pacific: The effect of intrinsic and extrinsic factors. Ciencias Marinas, 47(1), 33–47. https://doi.org/10.7773/cm.v47i1.3047
Section
Research Article

Metrics

References

Allemand D, Ferrier-Pagès C, Furla P, Houlbrèque F, Puverel S, Reynaud S, Tambutté.É, Tambutté S, Zoccola D. 2004. Biomineralisation in reef-building corals: from molecular mechanisms to environmental control. Comptes Rendus Palevolution. 3(6–7):453–467.

https://doi.org/10.1016/j.crpv.2004.07.011

Allemand D, Tambutté É, Zoccola D, Tambutté S. 2011. Coral calcification, cells to reefs. In: Dubinsky Z, Stambler E (eds.), Coral Reefs: An Ecosystem in Transition. Berlin (Germany): Springer. p. 119–150.

https://doi.org/10.1007/978-94-007-0114-4_9

Alvarez-Filip L, Dulvy NK, Gill JA, Côté IM, Watkinson AR. 2009. Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc R Soc London, Ser B. 276:3019–3025.

https://doi.org/10.1098/rspb.2009.0339

Andersson AJ, Gledhill D. 2013. Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Annu Rev Mar Sci. 5(1):321–348.

https://doi.org/10.1146/annurev-marine-121211-172241

Bucher DJ, Harriott VJ, Roberts LG. 1998. Skeletal micro-density, porosity and bulk density of acroporid corals. J Exp Mar Biol Ecol. 228(1):117–136.

https://doi.org/10.1016/S0022-0981(98)00020-3

Cabral-Tena RA, López-Pérez A, Reyes-Bonilla H, Calderon-Aguilera LE, Norzagaray-López CO, Rodríguez-Zaragoza FA, Cupul-Magaña A, Rodríguez-Troncoso AP, Ayala-Bocos A. 2018. Calcification of coral assemblages in the eastern Pacific: Reshuff ling calcification scenarios under climate change. Ecol Indicators. 95(1):726–734.

https://doi.org/10.1016/j.ecolind.2018.08.021

Cabral-Tena RA, Reyes-Bonilla H, Lluch-Cota S, Paz-García DA, Calderón-Aguilera LE, Norzagaray-López O, Balart EF. 2013. Different calcification rates in males and females of the coral Porites panamensis in the Gulf of California. Mar Ecol Prog Ser. 476:1–8.

https://doi.org/10.3354/meps10269

Carballo JL, Cruz-Barraza JA, Nava H, Bautista-Guerrero E. 2008. Esponjas perforadoras de sustratos calcáreos. Importancia en los ecosistemas arréciales del Pacifico este. Mexico: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). 183p.

Carricart-Ganivet JP. 2007. Annual density banding in massive coral skeletons: Result of growth strategies to inhabit reefs with high microborers' activity? Mar Biol. 153(1):1–5.

https://doi.org/10.1007/s00227-007-0780-3

Carricart-Ganivet JP, Beltrán–Torres AU, Merino-Ibarra M, Ruiz-Zárate MA. 2000. Skeletal extension, density and calcification rate of the reef building coral Montastraea annularis (Ellis and Solander) in the Mexican Caribbean. Bull Mar Sci. 66(1):215–224.

[CONANP] Comisión Nacional de Áreas Naturales Protegidas. 2005. Programa de Conservación y Manejo del Parque Nacional Isla Isabel. Mexico: Comisión Nacional de Áreas Naturales Protegidas.

[CONANP] Comisión Nacional de Áreas Naturales Protegidas. 2007. Programa de Conservación y Manejo del Parque Nacional Islas Marietas. Mexico: Comisión Nacional de Áreas Naturales Protegida.

Cupul-Magaña AL, Rodríguez-Troncoso AP. 2017. Tourist carrying capacity at Islas Marietas National Park: An essential tool to protect the coral community. Applied Geography. 88:15–23.

http://doi.org/10.1016/j.apgeog.2017.08.021

Darke WM, Barnes DJ. 1993. Growth trajectories of corallites and ages of polyps in massive colonies of reef-building corals of the genus Porites. Mar Biol. 117(2):321–326.

https://doi.org/10.1007/BF00345677

DeCarlo TM, Cohen AL, Barkley HC, Cobban Q, Young C, Shamberger KE, Brainard RE, Golbuu Y. 2015. Coral macrobioerosion is accelerated by ocean acidification and nutrients. Geology. 43(1):7–10.

https://doi.org/10.1130/G36147.1

Eyre BD, Andersson AJ, Cyronak T. 2014. Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat Clim Change. 4(11):969976.

https://doi.org/10.1038/nclimate2380

Fang JKH, Mello-Athayde MA, Schönberg CHL, Kline DI, Hoegh-Guldberg O, Dove S. 2013. Sponge biomass and bioerosion rates increase under ocean warming and acidification. Global Change Biology. 19(12):3581–3591.

https://doi.org/10.1111/gcb.12334

Glynn PW. 1997. Bioerosion and coral reef growth: A dynamic balance. In: Birkeland (ed.), Life and death of coral reefs. Nueva York: Chapman & Hall. 69–98 p.

Glynn PW. 2000. Effects of the 1997–98 El Niño Southern-oscillation on Eastern Pacific corals and coral reefs: An overview. In: Moosa MK, Soemodihardjo S, Soegiarto A Romimohtarto K, Nontji A, Soekarno, Suharsono (eds.). Proceedings of the 9th International Coral Reefs Symposium; 2000 Oct 23–27; Bali (Indonesia); Vol. 2. Indonesia: Ministry of Environment. p. 1169–1174.

Glynn PW. 2001. Eastern Pacific coral reef ecosystems. In: Seeliger U, Kjerfve B. (eds.), Coastal Marine Ecosystems of Latin America 144. Germany: Springer-Verlag Berlin Heidelberg. Ecol Stud. p. 281–305.

Glynn PW, Ault PS. 2000. A biogeographic analysis and review of the far eastern Pacific coral reef region. Coral Reefs. 19(1):1–23.

https://doi.org/10.1007/s003380050220

Hein FJ, Risk MJ. 1975. Bioerosion of coral heads: inner patch reefs, Florida Reef Tract. Bull Mar Sci. 25(1):133–138.

Hernández-Ballesteros LM, Elizalde-Rendón EM, Carballo JL, Carricart-Ganivet JP. 2013. Sponge bioerosion on reef-building corals: Dependent on the environment or on skeletal density? J Exp Mar Biol Ecol. 441:23−27.

https://doi.org/10.1016/j.jembe.2013.01.016

Herrera-Escalante T, López-Pérez RA, Leyte-Morales GE. 2005. Bioerosion caused by the sea urchin Diadema mexicanum (Echinodermata: Echinoidea) at Bahías de Huatulco, Western Mexico. Rev Biol Trop. 53(3):263–273.

Highsmith RC, Lueptow RL, Schonberg SC. 1983. Growth and bioerosion of three massive corals on the Belize barrier reef. Mar Ecol Prog Ser. 13:261–271.

https://doi.org/10.3354/meps013261

Humanson GL. 1967. Animal Tissue Techniques. San Francisco (CA): W.H. Freeman and Company. 569 p.

Kessler WS. 2006. The circulation of the eastern tropical Pacific: A review. Prog Oceanogr. 69(2–4):181–217.

https://doi.org/10.1016/j.pocean.2006.03.009

Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN. 1999. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science. 284(5411):118–120.

https://doi.org/10.1126/science.284.5411.118

Lough JM, Cooper TF. 2011. New insights from coral growth band studies in an era of rapid environmental change. Earth Sci Rev. 108(3–4):170–184

https://doi.org/10.1016/j.earscirev.2011.07.001

Maher RL, Johnston MA, Brandt ME, Smith TB, Correa AMS. 2018. Depth and coral cover drive the distribution of a coral macroborer across two reef systems. PLOSONE. 13(6):1–17.

https://doi.org/10.1371/journal.pone.0199462

Manzello DP. 2010. Coral growth with thermal stress and ocean acidification: lessons from the eastern tropical Pacific. Coral Reefs. 29(3):749–758.

https://doi.org/10.1007/s00338-010-0623-4

Manzello DP, Enochs IC, Bruckner A, Renaud PG, Kolodziej G, Budd DA, Carlton R, Glynn PW. 2014. Galápagos coral reef persistence after ENSO warming across an acidification gradient. PANGAEA.

https://doi.org/10.1594/PANGAEA.847762

Manzello DP, Kleypas JA, Budd DA, Eakin CM, Glynn PW, Langdon C. 2008. Poorly cemented coral reefs of the eastern tropical Pacific: possible insights into reef development in a high-CO2 world. Proc Natl Acad Sci USA. 105(30):10450–10455.

https://doi.org/10.1073/pnas.0712167105

Medellín-Maldonado F, Cabral-Tena RA, López-Pérez A, Calderón-Aguilera LE, Norzagaray-López CO, Chapa-Balcorta C, Zepeta-Vilchis RC. 2016. Calcificación de las principales especies de corales constructoras de arrecifes en la costa del Pacífico del sur de México = Calcification of the main reef-building coral species on the Pacific coast of southern Mexico. Cienc Mar. 42(3):209–225.

http://dx.doi.org/10.7773/cm.v42i3.2650

Neumann AC. 1966. Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa. Limnol Oceanogr. 11(1):92–108.

https://doi.org/10.4319/lo.1966.11.1.0092

Norzagaray-López CO. 2010. Producción potencial de carbonato de calcio por Porites panamensis en dos comunidades arrecifales del Pacífico mexicano [MSc thesis]. [Ensenada (Mexico)]: Centro de Investigación Científica y Educación Superior de Ensenada. 94 p.

Norzagaray-López CO, Calderon-Aguilera LE, Hernández-Ayón JM, Reyes-Bonilla H, Carricart-Ganivet JP, Cabral-Tena RA, Balart EF. 2014. Low calcification rates and calcium carbonate production in Porites panamensis at its northernmost geographic distribution. Mar Ecol. 36(4):1244–1255.

http://doi.org/10.1111/maec.12227

Palacios-Hernández E, Carrillo LE, Filonov A, Brito-Castillo L, Cabrera-Ramos CE. 2010. Seasonality and anomalies of sea surface temperature off the coast of Nayarit, Mexico. Ocean Dynamics. 60(1):81–91.

https://doi.org/10.1007/s10236-009-0244–z

Pantoja DA, Marinone SG, Parés-Sierra A, Gómez-Valdivia F. 2012. Modelación numérica de la hidrografía y circulación estacional y de mesoescala en el Pacífico central mexicano = Numerical modeling of seasonal and mesoscale hydrography and circulation in the Mexican Central Pacific. Cienc Mar. 38(2):363–379.

https://doi.org/10.7773/cm.v38i2.2007

Pari N, Peyrot-Clausade M, Le Champion-Alsumard T, Hutchings P, Chazottes V, Gobulic S, Le Champion J, Fontaine MF. 1998. Bioerosion of experimental substrates on high islands and on atoll lagoons (French Polynesia) after two years of exposure. Mar Ecol Prog Ser. 166:119–130.

https://doi.org/10.3354/meps166119

Pennington JT, Mahoney KL, Kuwahara VS, Kolber DD, Calienes R, Chavez FP. 2006. Primary production in the eastern tropical Pacific: a review. Progr Oceanogr. 69(2–4):285–317.

https://doi.org/10.1016/j.pocean.2006.03.012

Perry CT, Edinger EN, Kench PS, Murphy GN, Smithers SG, Steneck RS, Mumby PJ. 2012. Estimating rates of biologically driven coral reef framework production and erosion: a new census-based carbonate budget methodology and applications to the reefs of Bonaire. Coral Reefs. 31(3):853–868.

https://doi.org/10.1007/s00338-012-0901-4

Prouty NG, Cohen A, Yates KK, Storlazzi CD, Swarzenski PW, White D. 2017. Vulnerability of coral reefs to bioerosion from land-based sources of pollution. J Geophys Res Oceans. 122(12):9319–9331.

https://doi.org/10.1002/2017jc013264

Reyes-Bonilla H. 2005. Atlas de Corales Pétreos (Anthozoa: Scleractinia) del Pacífico Mexicano. Ensenada (Baja California, Mexico): Centro de Investigación Científica y Educación Superior de Ensenada.

Reyes-Bonilla H, Calderon-Aguilera LE. 1999. Population density, distribution and consumption rates of three corallivores at Cabo Pulmo Reef, Gulf of California, Mexico. Mar Ecol. 20(3– 4):347–357.

https://doi.org/10.1046/j.1439-0485.1999.2034080.x

Rodríguez-Troncoso AP, Carpizo-Ituarte E, Leyte-Morales GE, Chi-Barragán G, Tapia-Vázquez O. 2011. Sexual reproduction of three coral species from the Mexican South Pacific. Mar Biol. 158(12):2673–2683.

https://doi.org/10.1007/s00227-011-1765-9

Scott PJB, Risk MJ. 1988. The effect of Lithophaga (Bivalvia: Mytilidae) boreholes on the strength of the coral Porites lobata. Coral Reefs. 7(3):145–151.

https://doi.org/10.1007/bf00300974

Sheppard CRC, Davy SK, Pilling GM. 2010. The Biology of Coral Reefs. London (UK): Oxford University Press.

Tortolero-Langarica JJA, Carricart-Ganivet JP, Cupul-Magaña AL, Rodríguez-Troncoso AP. 2017. Historical insights on growth rates of the reef-building corals Pavona gigantea and Porites panamensis from the Northeastern tropical Pacific. Mar Environ Res. 132:23–32.

http://doi.org/10.1016/j.marenvres.2017.10.004

Tortolero-Langarica JJA, Cupul-Magaña AL, Carricart-Ganivet JP, Mayfield AB, Rodríguez-Troncoso AP. 2016a. Differences in growth and calcification rates in the reef building coral Porites lobata: the implications of morphotype and gender on coral growth. Front Mar Sci. 3:179.

https://doi.org/10.3389/fmars.2016.00179

Tortolero-Langarica JJA, Rodríguez-Troncoso AP, Carricart-Ganivet JP, Cupul-Magaña AL. 2016b. Skeletal extension, density and calcification rates of massive free-living coral Porites lobata Dana, 1846. J Exp Mar Biol Ecol. 478:68–76.

https://doi.org/10.1016/j.jembe.2016.02.005

Tortolero-Langarica JJA, Rodríguez-Troncoso AP, Cupul-Magaña AL, Alarcón-Ortega LC, Santiago-Valentín JD. 2019. Accelerated recovery of calcium carbonate production in coral reefs using low-tech ecological restoration. Ecol Eng. 128:89–97.

https://doi.org/10.1016/j.ecoleng.2019.01.002

Tribollet A, Golubic S. 2011. Reef bioerosion: Agents and processes. In: Dubinsky Z, Stambler N (eds.), Coral Reefs: An Ecosystem in Transition. Dordrecht (Netherlands): Springer. pp. 435–449.

https://doi.org/10.1007/978-94-007-0114-4_25

Veron JEN. 2000. Corals of the World. Townsville (Australia): Australian Institute of Marine Science. Wizemann A, Nandini SD, Stuhldreier I, Sánchez-Noguera C, Wisshak M, Westphal H, Rixen T, Wild C, Reymond CE. 2018. Rapid bioerosion in a tropical upwelling coral reef. PLOS ONE. 13(9):e0202887.

https://doi.org/10.1371/journal.pone.0202887

Wulff JL, Buss LW. 1979. Do sponges help hold coral reefs together? Nature. 281:474–475.

https://doi.org/10.1038/281474a0

Zundelevich A, Lazar B, Ilan M. 2007. Chemical versus mechanical bioerosion of coral reefs by boring sponges – lessons from Pione cf. vastifica. J Exp Biol. 210(1):91–96.

https://doi.org/10.1242/jeb.02627

Most read articles by the same author(s)