Identification of pathogenic bacteria in fishes caught in the Pacific off Nicaragua

Main Article Content

Byron Flores
Nelly González
Arlen Bravo
Brenda Mora-Sánchez
Dayana Torres
William Jirón
Jessica Sheleby-Elías
José L Balcázar

Abstract

The aim of this study was to identify pathogenic bacteria in fishes from 4 communities on the western Pacific coast of Nicaragua. A total of 62 fishes were collected for microbiological analysis using muscle samples, which were inoculated on thiosulfate-citrate-bile salts-sucrose agar and trypticase soy agar. Bacterial identification was carried out by biochemical tests and tests of tolerance to different NaCl concentrations, and the Kirby–Bauer method was used to determine the bacterial resistance. The results revealed the presence of Vibrio metschnikovii in 30.64% (95% CI: 18.36–42.92) of the fish samples, while Salinivibrio costicola was detected in 22.58% (95% CI: 11.37–33.79) of the samples. Coagulase-negative staphylococci (CoNS) were detected in 82.30% (95% CI: 71.94–92.57) of the samples. Species of the genus Vibrio were detected at a concentration of 3.9 × 103 CFU·g–1 in fish samples from the Las Peñitas community and 2.52 × 103 CFU·g–1 in samples from Poneloya, and these values were significantly higher (P = 0.003) than those found for samples from El Tránsito (5.25 × 102 CFU·g–1). Furthermore, 100% of the V. metschnikovii and S. costicola strains were resistant to amoxicillin/clavulanic acid and sensitive to ciprofloxacin. The bacterial load for S. costicola is typical of marine environments and does not represent a health hazard. However, V. metschnikovii can be present in raw fish and it therefore represents a public health hazard, as do CoNS, which are indicators of anthropogenic contamination.

Downloads

Download data is not yet available.

Article Details

How to Cite
Flores, B., González, N., Bravo, A., Mora-Sánchez, B., Torres, D., Jirón, W., … Balcázar, J. L. (2021). Identification of pathogenic bacteria in fishes caught in the Pacific off Nicaragua. Ciencias Marinas, 47(3), 175–184. https://doi.org/10.7773/cm.v47i3.3212
Section
Articles

Metrics

References

Aliaga R, Miranda J, Zevallos J. 2010. Aislamiento e identificación de Vibrio parahaemolyticus O3:K6 en pescados y moluscos bivalvos procedentes de un mercado pesquero de Lima, Perú. Rev Medica Herediana. 21(3):139–145.

https://doi.org/10.20453/rmh.v21i3.1123

Arévalo Z, Clavijo AM, Rolo de M, Álvarez M, Conroy D, Infante D, Santander J. 2003. Aislamiento de Vibrio cholerae a partir de lisas y tilapias en Venezuela. Rev Soc Venez Microbiol. 23:127– 130.

Austin B. 2010. Vibrios as causal agents of zoonoses. Vet Microbiol. 140(3–4):310–317.

https://doi.org/10.1016/j.vetmic.2009.03.015

Bonnin-Jusserand M, Copin S, Le Bris C, Brauge T, Gay M, Brisabois A, Grard T, Midelet-Bourdin G. 2019. Vibrio species involved in seafood-borne outbreaks (Vibrio cholerae, V. parahaemolyticus and V. vulnificus): Review of microbiological versus recent molecular detection methods in seafood products. Crit Rev Food Sci Nutr. 59(4):597–610.

https://doi.org/10.1080/10408398.2017.1384715

Carpenter DE, Anderson K, Citron DM, Dzink-Fox JL, Hackel M, Jenkins SG, Knapp C, Koeth L, Schuetz AN, Wexler H. 2018. Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria. 9th ed. Wayne (PA): Clinical and Laboratory Standards Institute. 47 p.

Divyashree M, Vijaya Kumar D, Ballamoole KK, Shetty AV, Chakraborty A, Karunasagar I. 2020. Occurrence of antibiotic resistance among Gram negative bacteria isolated from effluents of fish processing plants in and around Mangalore. Int J Environ Health Res. 30(6):653–660.

https://doi.org/10.1080/09603123.2019.1618799

Escobar J. 2002. La contaminación de los ríos y sus efectos en las áreas costeras y el mar. Santiago de Chile (Chile): Naciones Unidas, Comisión Económica para América Latina y el Caribe [United Nations, Economic Commission for Latin America and the Caribbean]. 63 p.

[FAO] Food and Agriculture Organization of the United Nations. 2014. Contribución de la pesca y la acuicultura a la seguridad alimentaria y el ingreso familiar en Centroamérica. Panamá: FAO. 107 p.

[FAO] Food and Agriculture Organization of the United Nations. 2018. Perfiles sobre la pesca y la acuicultura por países: La República de Nicaragua. [place unknown]: FAO: [accessed 2020 Nov 19]. http://www.fao.org/fishery/facp/NIC/es.

Feliatra F, Nursyirwani N, Zirma AP, Lukistyowati I, Mulyadi A, Adelina A. 2020. Antibacterial potential of heterotrophic bacteria isolated in Siak River estuary, Indonesia, against pathogens in fish. AACL Bioflux. 13(3):1585–1594.

Ghaly AE, Dave D, Budge S, Brooks MS. 2010. Fish spoilage mechanisms and preservation techniques: Review. Am J Appl Sci. 7(7):859–877.

https://doi.org/10.3844/ajassp.2010.859.877

Gomez-Gil B, Fajer-Avila E, García-Vargas F. 2007. Vibrios of the spotted rose snapper Lutjanus guttatus Steindachner, 1869 from northwestern Mexico. J Appl Microbiol. 102(6):1518–1526.

https://doi.org/10.1111/j.1365-2672.2006.03199.x

Hashiem-Mohamed M, Khalifa E, El-Sherry YM. 2016. Detection of bacterial infections in some Red Sea fish in Hurghada. J Mar Biol Oceanogr. 5(4).

https://doi.org/10.4172/2324-8661.1000164

Hassen B, Jouini A, Elbour M, Hamrouni S, Maaroufi A. 2020. Detection of Extended-Spectrum β-Lactamases (ESBL) producing Enterobacteriaceae from fish trapped in the lagoon area of Bizerte, Tunisia. BioMed Res Int. 2020(7132812):1–9.

https://doi.org/10.1155/2020/7132812

Jensen J, Jellinge ME. 2014. Severe septic shock and cardiac arrest in a patient with Vibrio metschnikovii: a case report. J Med Case Reports. 8:348.

https://doi.org/10.1186/1752-1947-8-348

Kumar HS, Parvathi A, Karunasagar I, Karunasagar I. 2005. Prevalence and antibiotic resistance of Escherichia coli in tropical seafood. World J Microbiol Biotechnol. 21:619–623.

https://doi.org/10.1007/s11274-004-3555-8

Leyton Y, Riquelme C. 2008. Vibrios en los sistemas marinos costeros = Vibrios in the marine coastal systems. Rev Biol Mar Oceanogr. 43(3):441–456.

https://doi.org/10.4067/S0718-19572008000300004

Linde H-J, Kobuch R, Jayasinghe S, Reischl U, Lehn N, Kaulfuss S, Beutin L. 2004. Vibrio metschnikovii, a rare cause of wound infection. J Clin Microbiol. 42(10):4909–4911.

https://doi.org/10.1128/JCM.42.10.4909-4911.2004

Mahmoud MM, Sayed-Hassan E, Nour-El-Deen EA, Haridy M, El- Moghny-Salem FA, Abdel-Rahman Mohamed M. 2017. Bacterial infections in some Red Sea fishes. Assiut Vet Med J. 63(155):86–93.

Martínez-Díaz SF, Anguas-Vélez B. 2002. Incidence of Vibrio during dermal and systemic infections of the spotted sand bass (Paralabrax maculatofasciatus Steindachner: 1868) in captivity = Incidencia de Vibrio durante infecciones dérmicas y sistémicas de la cabrilla arenera (Paralabrax maculatofasciatus Steindachner: 1868) en cautiverio. Cienc Mar. 28(4):347–356.

https://doi.org/10.7773/cm.v28i4.240

Matté MH, Baldassi L, Barbosa ML, Malucelli MIC, Nitrini SMOO, Matté GR. 2007. Virulence factors of Vibrio metschnikovii strains isolated from fish in Brazil. Food Control. 18(6):747–751. https://doi.org/10.1016/j.foodcont.2006.03.012

Nsofor CA, Kemajou ST, Nsofor CM. 2014. Incidence and antibiotic susceptibility pattern of Vibrio species isolated from sea foods sold in Port-Harcourt, Nigeria. J Bacteriol Res. 6:13–16. https://doi.org/10.5897/JBR2013.0121

ProNicaragua. 2019. Guía del inversionista 2019. [Nicaragua]: Investment Promotion Agency. 70 p.

Romero-Jarero JM, Negrete-Redondo MP. 2011. Presencia de bacterias Gram positivas en músculo de pescado con importancia comercial en la zona del Caribe mexicano. Rev Mex Biodivers. 82(2):599–606.

https://doi.org/10.22201/ib.20078706e.2011.2.465

Santiago ML, Espinoza A, Bermudez MDC. 2009. Use of antibiotics in culture shrimp. Rev Mex Cienc Farm. 40:22–32.

Uddin ME, Akter T, Sultana P, Sultana P, Hasan MI, Lubna MA, Monem HA, Parvez MAK, Nahar S, Khan MS. 2018. Isolation, identification and antimicrobial susceptibility profile analysis of Vibrio cholerae O1 from stool samples of Bangladesh. Adv Microbiol. 8(3):188–196.

https://doi.org/10.4236/aim.2018.830