Effects of irradiance and nitrate on photosynthesis in the seagrass Cymodocea nodosa

Main Article Content

Alejandro Cabello-Pasini
Jose M Sandoval-Gil
Raquel Muñiz-Salazar
Víctor Macias-Carranza
Félix L Figueroa


The effects of temperature, irradiance, and other environmental variables on photosynthesis in seagrasses are well understood. However, little information is available regarding the effects of the nitrate concentration in seawater on the photosynthetic characteristics of marine vegetation. Thus, the aim of this study was to determine the effect of the nitrate concentration in seawater on the effective quantum yield of the seagrass Cymodocea nodosa. Cymodocea nodosa shoots were incubated under different irradiance levels and with different nitrate concentrations. In contrast, a decrease in transmittance and an exponential increase in the absorptance of the shoots were observed as a function of increasing nitrate levels. Furthermore, the effective quantum yield of photosystem II (ΦPSII) in C. nodosa shoots increased exponentially as the nitrate concentration in the media increased. The ΦPSII values in the shoots decreased as irradiance increased and reached minimum values at solar noon or 2 h afterward. However, the decrease of ΦPSII values was 4-fold greater in shoots incubated under full solar radiation (100% natural incident irradiance, Eo) compared to those of shoots incubated with 20% Eo. The ΦPSII values decreased to almost zero in shoots pre-incubated with no nitrate (0 μM NO3), whereas ΦPSII values in shoots pre incubated with 25 and 100 μM NO3 decreased by approximately 25% of their initial values. Collectively, these results indicate that nitrogen levels in seawater regulate the effective quantum yield values of C. nodosa, which suggests that the photosynthetic characteristics of this seagrass might be regulated by fluctuating nitrate levels in the water column such as those that are observed in upwelling regions.


Download data is not yet available.

Article Details

How to Cite
Cabello-Pasini, A., Sandoval-Gil, J. M., Muñiz-Salazar, R., Macias-Carranza, V., & Figueroa, F. L. (2023). Effects of irradiance and nitrate on photosynthesis in the seagrass Cymodocea nodosa. Ciencias Marinas, 49. https://doi.org/10.7773/cm.y2023.3300



Beer S, Larsson C, Poryan O, Axelsson L. 2000. Photosynthetic rates of Ulva (Chlorophyta) measured by pulse amplitude modulated (PAM) fluorometry. Eur J Phycol. 35(1):69-74. https://doi.org/10.1080/09670260010001735641 DOI: https://doi.org/10.1080/09670260010001735641

Beer S, Vilenkin B, Weil A, Veste M, Susel L, Eshel A. 1998. Measuring photosynthetic rates in seagrasses by pulse amplitude modulated (PAM) fluorometry. Mar Ecol Prog Ser. 174:293-300. https://doi.org/10.3354/meps174293 DOI: https://doi.org/10.3354/meps174293

Brito MC, Martin D, Núñez J. 2005. Polychaetes associated to a Cymodocea nodosa meadow in the Canary Islands: assemblage structure, temporal variability and vertical distribution compared to other Mediterranean seagrass meadows. Mar Biol. 146:467-481. https://doi.org/10.1007/s00227-004-1460-1 DOI: https://doi.org/10.1007/s00227-004-1460-1

Cabello-Pasini A, Figueroa FL. 2005. Effect of nitrate concentration on the relationship between photosynthetic oxygen evolution and electron transport rate in Ulva rigida (Chlorophyta). J Phycol. 41(6):1169-1177. https://doi.org/10.1111/j.1529-8817.2005.00144.x DOI: https://doi.org/10.1111/j.1529-8817.2005.00144.x

Cabello-Pasini A, Muñiz-Salazar R, Ward DH. 2003. Annual variations of biomass and photosynthesis in Zostera marina at its southern end of distribution in the North Pacific. Aquat Bot. 76(1):31-47. https://doi.org/10.1016/S0304-3770(03)00012-3 DOI: https://doi.org/10.1016/S0304-3770(03)00012-3

Cabello-Pasini A, Muñiz-Salazar R, Ward DH. 2004. Caracterización bioquímica del pasto marino Zostera marina en el límite sur de su distribución en el Pacífico Norte = Biochemical characterization of the eelgrass Zostera marina at its southern distribution limit in the North Pacific. Cienc Mar. 30(1A):21-34. http:/doi.org/10.7773/cm.v30i11.123 DOI: https://doi.org/10.7773/cm.v30i11.123

Carter GA, Spiering BA. 2002. Optical properties of intact leaves for estimating chlorophyll concentration. J Environ Qual. 31(5):1424-1432. https://doi.org/10.2134/jeq2002.1424 DOI: https://doi.org/10.2134/jeq2002.1424

Dawson SP, Dennison WC. 1996. Effects of ultraviolet and photosynthetically active radiation on five seagrass species. Mar Biol. 125:629-638. https://doi.org/10.1007/BF00349244 DOI: https://doi.org/10.1007/BF00349244

Edwards GE, Baker NR. 1993. Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photo Res. 37:89-102. https://doi.org/10.1007/BF02187468 DOI: https://doi.org/10.1007/BF02187468

Enriquez S, Agustí S, Duarte CM. 1994. Light absorption by marine macrophytes. Oecologia. 98:121-129. https://doi.org/10.1007/BF00341462 DOI: https://doi.org/10.1007/BF00341462

Figueroa FL, Conde-Álvarez R, Gómez I. 2003. Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions. Photo Res. 75:259-275. https://doi.org/10.1023/A:1023936313544 DOI: https://doi.org/10.1023/A:1023936313544

Figueroa FL, Jiménez C, Viñegla B, Pérez-Rodríguez E, Aguilera J, Flores-Moya A, Altamirano M, Lebert M, Häder DP. 2002. Effects of solar UV radiation on photosynthesis of the marine angiosperm Posidonia oceanica from southern Spain. Mar Ecol Prog Ser. 230:59-70. https://doi.org/10.3354/meps230059 DOI: https://doi.org/10.3354/meps230059

Franklin L, Forster RM. 1997. The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology. Eur J Phycol. 32(3):207-232. https://doi.org/10.1080/09670269710001737149 DOI: https://doi.org/10.1080/09670269710001737149

Häder DP, Figueroa FL. 1997. Photoecophysiology of marine macroalgae. Photochem Photobiol. 66(1):1-14. https://doi.org/10.1111/j.1751-1097.1997.tb03132.x DOI: https://doi.org/10.1111/j.1751-1097.1997.tb03132.x

Hanelt D. 1998. Capability of dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar Biol. 131:361-369. https://doi.org/10.1007/s002270050329 DOI: https://doi.org/10.1007/s002270050329

Johnsen G, Sakshaug E. 2007. Biooptical characteristics of PSII and PSI in 33 species (13 pigment groups) of marine phytoplankton, and the relevance for pulse‐amplitude‐modulated and fast‐repetition‐rate fluorometry. J Phycol. 43(6):1236-1251. https://doi.org/10.1111/j.1529-8817.2007.00422.x DOI: https://doi.org/10.1111/j.1529-8817.2007.00422.x

Kolber Z, Wyman KV, Falkowski PG. 1990. Natural variability in photosynthetic energy conversion efficiency: A field study in the Gulf of Maine. Limnol Oceanogr. 35(1):72-79. https://doi.org/10.4319/lo.1990.35.1.0072 DOI: https://doi.org/10.4319/lo.1990.35.1.0072

Mazzella L, Alberte RS. 1986. Light adaptation and the role of auto-trophic epiphytes in primary production of the temperate seagrass, Zostera marina L. J Exp Mar Biol Ecol. 100(1–3):165-180. https://doi.org/10.1016/0022-0981(86)90161-9 DOI: https://doi.org/10.1016/0022-0981(86)90161-9

Muñiz-Salazar R, Talbot S, Sage K, Ward DH, Cabello-Pasini A. 2005. Population genetic structure of annual and perennial populations of Zostera marina L. from the Pacific coast of Baja California and the Gulf of California. Mol Ecol. 14(3):711-722. DOI: https://doi.org/10.1111/j.1365-294X.2005.02454.x

Phillips RC, McRoy CP. 1980. Handbook of Seagrass Biology. New York (NY) and London (UK): Garland STPM Press. 402 p. https://doi.org/10.4319/lo.1980.25.3.0579 DOI: https://doi.org/10.4319/lo.1980.25.3.0579

Schreiber U, Bilger W, Neubauer C. 1994. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze E, Caldwell M (eds.), Ecophysiology of Photosynthesis. Berlin-Heidelberg (Germany): Springer Study Edition. p. 49-70. DOI: https://doi.org/10.1007/978-3-642-79354-7_3

Schreiber U, Neubauer C. 1990. O2-dependent electron flow, membrane energization and mechanism of non-photochemical quenching of chlorophyll fluorescence. Photo Res. 25:279-293. https://doi.org/10.1007/BF00033169 DOI: https://doi.org/10.1007/BF00033169

Sokal RR, Rohlf FJ. 1995. Biometry: the principles and practice of statistics in biological research. New York (NY): WH Freeman and Company. 887 p.

Touchette BW, Burkholder JM. 2007. Carbon and nitrogen metabolism in the seagrass, Zostera marina L.: Environmental control of enzymes involved in carbon allocation and nitrogen assimilation. J Exp Mar Biol Ecol. 350(1–2):216-233. https://doi.org/10.1016/j.jembe.2007.05.034 DOI: https://doi.org/10.1016/j.jembe.2007.05.034

Young EB, Beardall J. 2003. Rapid ammonium- and nitrate-induced perturbations to Chl a fluorescence in nitrogen-stressed Dunaliella tertiolecta (Chlorophyta). J Phycol. 39(2):332-342. https://doi.org/10.1046/j.1529-8817.2003.02109.x DOI: https://doi.org/10.1046/j.1529-8817.2003.02109.x