Effect of the water exchange system on the development, survival, and performance of Argopecten purpuratus larvae culture (Pectinidae, Mollusca)
Main Article Content
Abstract
Scallop cultivation on the coasts of Peru and Chile is continuously expanding, leading to increased larval production and the mounting need to enhance efficiency to boost sector productivity. This study focused on investigating how the water exchange system affects the development, survival, and performance of Argopecten purpuratus larvae. Three static water exchange systems (T1 [12-h exchange], T2 [24-h exchange], and T3 [48-h exchange]) and 2 recirculation systems (RAS 1 and RAS 2) were evaluated, with 3 replicates per treatment. The feed supplied in each treatment consisted of a mixture of the microalgae Isochrysis galbana, Diacronema lutheri, Chaetoceros calcitrans, Chaetoceros gracilis, and Nannochloropsis sp. at a concentration of 5 × 104 cell·mL–1·d–1. The results showed that survival was higher in T1 (80.49%) than in T2 (68.49%) or T3 (67.17%); lower survival was observed in RAS 2 (52.94%) and RAS 1 (6.34%). Furthermore, T1 resulted in significantly greater growth (shell height: 192.2 ± 9.03 μm; growth rate: 3.7 μm·d–1) than that of T2 or T3. Although RAS 1 was discarded due to high mortality, RAS 2 showed similar performance to that of T1 with regard to larval growth. Considering commercial factors and energy efficiency, T2 and T3 yielded the most favorable results in terms of larval survival and growth.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under a Creative Commons Attribution 4.0 License, which allows you to share and adapt the work, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Figures, tables and other elements in the article are included in the article’s CC BY 4.0 license, unless otherwise indicated. The journal title is protected by copyrights and not subject to this license. Full license deed can be viewed here.
Metrics
References
Alvarado R. 2017. El Modelo de Bass en la literatura sobre Argopecten purpuratus. Ciência Da Informação. 46(2):67-83.
Andersen S, Burnell G, Bergh Ø. 2000. Flow-through systems for culturing great scallop larvae. Aquacult Int. 8:249-257. https://doi.org/10.1023/A:1009271220868 DOI: https://doi.org/10.1023/A:1009271220868
Angel‐Dapa MA, Nava‐Gómez GE, López‐Galindo L, Carpizo‐Ituarte E, Castellanos‐Martínez S, Correa‐Reyes G, Garcia‐Esquivel Z. 2021. Effect of larval density and algal concentration on growth, survival and feeding rates of the scallop Nodipecten subnodosus (Sowerby, 1835). Aquacult Res. 52(10):4776-4785. https://doi.org/10.1111/are.15311 DOI: https://doi.org/10.1111/are.15311
Arfken A, Song B, Allen SK, Carnegie RB. 2021. Comparing larval microbiomes of the eastern oyster (Crassostrea virginica) raised in different hatcheries. Aquaculture. 531:735955. https://doi.org/10.1016/j.aquaculture.2020.735955 DOI: https://doi.org/10.1016/j.aquaculture.2020.735955
Avendaño M, Le Pennec M, Marcela C. 2001. Anormalidades en larvas de Argopecten purpuratus (Lamarck, 1819). Estudios oceanológicos. 20:33-42.
Badiola M, Mendiola D, Bostock J. 2012. Recirculating aquaculture systems (RAS) analysis: Main issues on management and future challenges. Aquacultural Engineering. 51:26-35. https://doi.org/10.1016/j.aquaeng.2012.07.004 DOI: https://doi.org/10.1016/j.aquaeng.2012.07.004
Bandin RL, Mendo JA. 1999. Asentamiento larval de la concha de abanico (Argopecten purpuratus) en colectores artificiales en la Bahía Independencia, Pisco, Perú. Investig mar. 27:3-13. https://doi.org/10.4067/S0717-71781999002700001 DOI: https://doi.org/10.4067/S0717-71781999002700001
Benítez S, Figueroa Á, Lagos NA, Silva AX, Duarte C, Vargas CA, Lardies MA, Cárdenas L. 2023. Differential gene expression analysis in the scallop Argopecten purpuratus exposed to altered pH and temperature conditions in an upwelling influenced farming area. Comp Biochem Physiol Part D: Genomics and Proteomics. 45:101046. https://doi.org/10.1016/j.cbd.2022.101046 DOI: https://doi.org/10.1016/j.cbd.2022.101046
Blanco Garcia A, Kamermans P. 2015. Optimization of blue mussel (Mytilus edulis) seed culture using recirculation aquaculture systems. Aquacult Res. 46(4):977-986. https://doi.org/10.1111/are.12260 DOI: https://doi.org/10.1111/are.12260
Brown MR, Jeffrey SW, Volkman JK, Dunstan GA. 1997. Nutritional properties of microalgae for mariculture. Aquaculture. 151(1–4):315-331. https://doi.org/10.1016/S0044-8486(96)01501-3 DOI: https://doi.org/10.1016/S0044-8486(96)01501-3
Cantillanez M, Avendaño M, Thouzeau G, Le Pennec M. 2005. Reproductive cycle of Argopecten purpuratus (Bivalvia: Pectinidae) in La Rinconada marine reserve (Antofagasta, Chile): Response to environmental effects of El Niño and La Niña. Aquaculture. 246(1–4):181-195. https://doi.org/10.1016/j.aquaculture.2004.12.031 DOI: https://doi.org/10.1016/j.aquaculture.2004.12.031
Carvalho YBM, Ferreira JF, da Silva FC, Bercht M. 2013. Factors influencing larval settlement of the Atlantic Lion’s Paw Scallop, Nodipecten nodosus. J Shellfish Res. 32(3):719-723. https://doi.org/10.2983/035.032.0313 DOI: https://doi.org/10.2983/035.032.0313
Cheng P, Zhou C, Chu R, Chang T, Xu J, Ruan R, Chen P, Yan X. 2020. Effect of microalgae diet and culture system on the rearing of bivalve mollusks: Nutritional properties and potential cost improvements. Algal Res. 51:102076. https://doi.org/10.1016/j.algal.2020.102076 DOI: https://doi.org/10.1016/j.algal.2020.102076
Congrove M. 2012. Feasibility of a recirculating aquaculture system for early larval culture of Crassostrea virginica. Virginia (USA): Virginia Institute of Marine Science, William & Mary. Final project report. 42 p.
Cortés C, Merino GE. 2020. Settling velocity and particle size bioengineering parameters gathered from solids generated by wild-caught premature punctuated snake-eels (Ophichthus remiger) reared in a marine prototype recirculating aquaculture system. Aquacultural Engineering. 90:102102. https://doi.org/10.1016/j.aquaeng.2020.102102 DOI: https://doi.org/10.1016/j.aquaeng.2020.102102
Da Costa F, Cerviño-Otero A, Iglesias Ó, Cruz A, Guévélou E. 2020. Hatchery culture of European clam species (family Veneridae). Aquacult Int. 28(4):1675-1708. https://doi.org/10.1007/s10499-020-00552-x DOI: https://doi.org/10.1007/s10499-020-00552-x
Galeno D, Barbieri MAB. 1999. Temperatura superficial del mar de satélites NOAA y captación de semilla de Argopecten purpuratus en Bahía Inglesa, Chile. Invest Mar. 27:119-123. https://doi.org/10.4067/S0717-71781999002700014 DOI: https://doi.org/10.4067/S0717-71781999002700014
Gruffydd LD, Beaumont A. 1970. Determination of the optimum concentration of eggs and spermatozoa for the production of normal larvae in Pecten maximus (Mollusca, Lamellibranchia). Helgoland Marine Research. 20(1):486-497. https://doi.org/10.1007/BF01609924 DOI: https://doi.org/10.1007/BF01609924
Helm MM, Bourne N, Lovatelli A, Bourne N, FAO. 2004. Hatchery Culture of Bivalves: A practical manual. Rome (Italy): Food and Agriculture Organization of the United Nations. 177 p.
Holbach M, Robert R, Miner P, Mingant C, Boudry P, Tremblay R. 2017. Effects of hydrodynamic factors on Pecten maximus larval development. Aquacult Res. 48(11):5463-5471. https://doi.org/10.1111/are.13361 DOI: https://doi.org/10.1111/are.13361
Hua D, Neves RJ, Jiao Y. 2013. Effects of algal density, water flow and substrate type on culturing juveniles of the rainbow mussel (Villosa iris) (Bivalvia: Unionidae) in a laboratory recirculating system. Aquaculture. 416–417:367-373. https://doi.org/10.1016/j.aquaculture.2013.09.002 DOI: https://doi.org/10.1016/j.aquaculture.2013.09.002
Joaquim S, Matias D, Matias AM, Leitão A, Soares F, Cabral M, Chícharo L, Gaspar MB. 2014. The effect of density in larval rearing of the pullet carpet shell Venerupis corrugata (Gmelin, 1791) in a recirculating aquaculture system. Aquacult Res. 47(4):1055-1066. https://doi.org/10.1111/are.12561 DOI: https://doi.org/10.1111/are.12561
Kamermans P, Blanco A, Joaquim S, Matias D, Magnesen T, Nicolas JL, Petton B, Robert R. 2016. Recirculation nursery systems for bivalves. Aquacult Int, 24(3), 827-842. https://doi.org/10.1007/s10499-016-9990-3 DOI: https://doi.org/10.1007/s10499-016-9990-3
Kluger LC, Taylor MH, Wolff M, Stotz W, Mendo J. 2019. From an open-access fishery to a regulated aquaculture business: The case of the most important Latin American bay scallop (Argopecten purpuratus). Rev Aquacult. 11(1):187-203. https://doi.org/10.1111/raq.12234 DOI: https://doi.org/10.1111/raq.12234
Kuhn DD, Angier MW, Barbour SL, Smith SA, Flick GJ. 2013. Culture feasibility of eastern oysters (Crassostrea virginica) in zero-water exchange recirculating aquaculture systems using synthetically derived seawater and live feeds. Aquacultural Engineering. 54:45-48. https://doi.org/10.1016/j.aquaeng.2012.10.008 DOI: https://doi.org/10.1016/j.aquaeng.2012.10.008
Lagos L, Herrera M, Sánchez-Lazo C, Martínez-Pita I. 2015. Effect of larval stocking density on growth, survival and whole body cortisol of the Mediterranean mussel Mytilus galloprovincialis (Lamarck, 1819) larvae reared under laboratory conditions. Aquacult Res. 46(7):1648-1656. https://doi.org/10.1111/a re.12318 DOI: https://doi.org/10.1111/are.12318
Loosanoff VL, Davis HC. 1963. Rearing of bivalve mollusks. Adv Mar Biol. 1:1-136. DOI: https://doi.org/10.1016/S0065-2881(08)60257-6
López de la Lama R, Valdés-Velasquez A, Huicho L, Morales E, Rivera-Ch M. 2018. Exploring the building blocks of social capital in the Sechura Bay (Peru): Insights from Peruvian scallop (Argopecten purpuratus) aquaculture. Ocean & Coastal Management. 165:235-243. https://doi.org/10.1016/j.ocecoaman.2018.08.030 DOI: https://doi.org/10.1016/j.ocecoaman.2018.08.030
Magnesen T, Jacobsen A. 2012. Effect of water recirculation on seawater quality and production of scallop (Pecten maximus) larvae. Aquacultural Engineering. 47:1-6. https://doi.org/10.1016/j.aquaeng.2011.12.005 DOI: https://doi.org/10.1016/j.aquaeng.2011.12.005
Martínez G, Aguilera C, Mettifogo L. 2000. Interactive effects of diet and temperature on reproductive conditioning of Argopecten purpuratus broodstock. Aquaculture. 183(1–2):149-159. https://doi.org/10.1016/S0044-8486(99)00291-4 DOI: https://doi.org/10.1016/S0044-8486(99)00291-4
Martínez G, Caceres LA, Uribe E, Diaz MA. 1995. Effects of different feeding regimens on larval growth and the energy budget of juvenile Chilean scallops, Argopecten purpuratus Lamarck. Aquaculture. 132(3–4):313-323. https://doi.org/10.1016/0044-8486(94)00359-V DOI: https://doi.org/10.1016/0044-8486(94)00359-V
Martı́nez G, Pérez H. 2003. Effect of different temperature regimes on reproductive conditioning in the scallop Argopecten purpuratus. Aquaculture. 228(1-4):153-167. DOI: https://doi.org/10.1016/S0044-8486(03)00321-1
Merino G, Uribe E, Soria G, von Brand E. 2009. A comparison of larval production of the northern scallop, Argopecten purpuratus, in closed and recirculating culture systems. Aquacultural Engineering. 40(2):95-103. https://doi.org/10.1016/j.aquaeng.2008.11.002 DOI: https://doi.org/10.1016/j.aquaeng.2008.11.002
Morris LA. 2020. Developing a protocol for the sustainable culture of microalgae for mangrove oyster (Crassostrea rhizophorae) under hatchery conditions in Jamaica. Reykjavik (Iceland): UNESCO GRÓ-Fisheries Training Programme. Final Project. 44 p.
Narvarte MA, Pascual MS. 2001. Diet trials on tehuelche scallop Aequipecten tehuelchus (d’Orb) larvae. Aquacult Int. 9:127-131. https://doi.org/10.1023/A:1014257008017 DOI: https://doi.org/10.1023/A:1014257008017
Nevejan N, Saez I, Gajardo G, Sorgeloos P. 2003a. Energy vs. essential fatty acids: What do scallop larvae (Argopecten purpuratus) need most?. Comp Biochem Physiol Part B: Biochem Mol Biol. 134(4):599-613. https://doi.org/10.1016/S1096-4959(03)00020-4 DOI: https://doi.org/10.1016/S1096-4959(03)00020-4
Nevejan N, Saez I, Gajardo G, Sorgeloos P. 2003b. Supplementation of EPA and DHA emulsions to a Dunaliella tertiolecta diet: Effect on growth and lipid composition of scallop larvae, Argopecten purpuratus (Lamarck, 1819). Aquaculture. 217(1–4):613-632. https://doi.org/10.1016/S0044-8486(02)00585-9 DOI: https://doi.org/10.1016/S0044-8486(02)00585-9
O’Connor WA, Heasman MP. 1997. Diet and feeding regimens for larval doughboy scallops, Mimachlamys asperrima. Aquaculture. 158(3–4):289-303. https://doi.org/10.1016/S0044-8486(97)00194-4 DOI: https://doi.org/10.1016/S0044-8486(97)00194-4
Pauletto M, di Camillo B, Miner P, Huvet A, Quillien V, Milan M, Ferraresso S, Pegolo S, Patarnello T, Bargelloni L. 2018. Understanding the mechanisms involved in the high sensitivity of Pecten maximus larvae to aeration. Aquaculture. 497:189-199. https://doi.org/10.1016/j.aquaculture.2018.07.059 DOI: https://doi.org/10.1016/j.aquaculture.2018.07.059
Pérez EP, Azocar C, Araya A, Astudillo O, Ramos M. 2012. Comparison of growth among cohorts obtained Argopecten purpuratus larval recruitment in natural and hatchery =Comparación del crecimiento de Argopecten purpuratus entre cohortes obtenidas de captación de larvas en ambiente natural y de hatchery. Lat Am J Aquat Res. 40(4):1026-1038. https://doi.org/10.3856/vol40-issue4-fulltext-18 DOI: https://doi.org/10.3856/vol40-issue4-fulltext-18
Pérez HM, Brokordt K, Gallardo A, Vidal I, Guderley H. 2016. A diet rich in polyunsaturated fatty acids improves the capacity for HSP70 synthesis in adult scallop Argopecten purpuratus and their offspring. Mar Biol. 163:193. https://doi.org/10.1007/s00227-016-2963-2 DOI: https://doi.org/10.1007/s00227-016-2963-2
Posit Team. 2024. RStudio: Integrated Development Environment for R. v. 4.0.3. Boston (USA): Posit PBC. http://www.posit.co
[PRODUCE] Ministerio de la Producción. 2022. Anuario Estadístico Pesquero y Acuícola. Lima (Peru): PRODUCE. Annual directory, 2022. Ciencias Marinas, Vol. 50(1A), 2024
Qiu T, Liu Y, Zheng J, Zhang T, Qi J. 2015. A feeding model of oyster larvae (Crassostrea angulata). Physiol Behav. 147:169-174. https://doi.org/10.1016/j.physbeh.2015.04.043 DOI: https://doi.org/10.1016/j.physbeh.2015.04.043
Ramajo L, Fernández C, Núñez Y, Caballero P, Lardies MA, Poupin MJ. 2019. Physiological responses of juvenile Chilean scallops (Argopecten purpuratus) to isolated and combined environmental drivers of coastal upwelling. ICES J Mar Sci. 76(6):1836-1849. https://doi.org/10.1093/icesjms/fsz080 DOI: https://doi.org/10.1093/icesjms/fsz080
Ramajo L, Marbà N, Prado L, Peron S, Lardies MA, Rodriguez-Navarro AB, Vargas CA, Lagos NA, Duarte CM. 2016.
Biomineralization changes with food supply confer juvenile scallops (Argopecten purpuratus) resistance to ocean acidification. Global Change Biol. 22(6):2025-2037. https://doi.org/10.1111/gcb.13179 DOI: https://doi.org/10.1111/gcb.13179
Ramajo L, Valladares M, Astudillo O, Fernández C, Rodríguez-Navarro AB, Watt-Arévalo P, Núñez M, Grenier C, Román R, Aguayo P, et al. 2020. Upwelling intensity modulates the fitness and physiological performance of coastal species: Implications for the aquaculture of the scallop Argopecten purpuratus in the Humboldt Current System. Sci Total Environ. 745:140949. https://doi.org/10.1016/j.scitotenv.2020.140949 DOI: https://doi.org/10.1016/j.scitotenv.2020.140949
Ramos CD, da Silva FC, Gomes CHA, Langdon C, Takano P, Gray MW, de Melo CMR. 2021. Effect of larval density on growth and survival of the Pacific oyster Crassostrea gigas in a recirculation aquaculture system. Aquaculture. 540:736667. https://doi.org/10.1016/j.aquaculture.2021.736667 DOI: https://doi.org/10.1016/j.aquaculture.2021.736667
Ran Z, Kong F, Xu J, Liao K, Xu X, Shi P, Chen K, Zhou C, Yan X. 2020. Fad and Elovl expressions, fatty acid compositions, and feed effects of three representative microalgae in Sinonovacula constricta (Lamarck 1818) at early developmental stages. Aquaculture. 521:735101. https://doi.org/10.1016/j.aquaculture.2020.735101 DOI: https://doi.org/10.1016/j.aquaculture.2020.735101
Rojas I, Cárcamo CB, Defranchi Y, Jeno K, Rengel J, Araya M, Tarnok ME, Aguilar L, Álvarez G, Schmitt P, et al. 2023. A diet rich in HUFAs enhances the energetic and immune response capacities of larvae of the scallop Argopecten purpuratus. Animals. 13(8):1416. https://doi.org/10.3390/ani13081416 DOI: https://doi.org/10.3390/ani13081416
Rojas I, Rivera-Ingraham GA, Cárcamo CB, Jeno K, de la Fuente-Ortega E, Schmitt P, Brokordt K. 2021. Metabolic cost of the immune response during early ontogeny of the scallop Argopecten purpuratus. Front Physiol. 12:718467. https://doi.org/10.3389/fphys.2021.718467 DOI: https://doi.org/10.3389/fphys.2021.718467
Sanjinez M, Berrú P, Taipe A, Alfaro S. 2016. Protocolo para muestreo biológico y biométrico de bivalvos marinos. Callao (Perú): Instituto del Mar del Perú (IMARPE). Technical report. Vol. 43(4). 16 p.
Sarkis A, Lovatelli A. 2022. Hatchery-based seed production of the Japanese scallop, Mizuhopecten yessoensis. Rome (Italy): FAO. 142 p. https://doi.org/10.4060/cc0535en DOI: https://doi.org/10.4060/cc0535en
Sicard MT, Maeda-Martínez AN, Ormart P, Reynoso-Granados T, Carvalho L. 1999. Optimum temperature for growth in the catarina scallop (Argopecten ventricosus-circularis, Sowerby II, 1842). J Shell Res. 18(2):385-392.
Silveira M, Becerra GR, Araujo de Miranda GCH, Ramos FJP, Lagreze SFJ, Brito FT, Nandi CG, Rodrigues de Melo CM. 2023. Effect of larval density and diet on the growth and survival of Perna perna mussels in recirculation system (RAS). AquaTechnica:Revista Iberoamericana de Acuicultura. 5(2):80-90. https://doi.org/10.5281/zenodo.7987022 DOI: https://doi.org/10.33936/at.v5i2.5233
Smaal AC, Ferreira JG, Grant J, Petersen JK, Strand Ø. 2019. Goods and Services of Marine Bivalves. Cham (Switzerland): Springer International Publishing. 591 p. https://doi.org/10.1007/978-3-319-96776-9 DOI: https://doi.org/10.1007/978-3-319-96776-9
Soria G, Merino G, von Brand E. 2007. Effect of increasing salinity on physiological response in juvenile scallops Argopecten purpuratus at two rearing temperatures. Aquaculture. 270(1–4):451-463. https://doi.org/10.1016/j.aquaculture.2007.05.018 DOI: https://doi.org/10.1016/j.aquaculture.2007.05.018
Soria G, Tordecillas-Guillen J, Cudney-Bueno R, Shaw W. 2010. Spawning induction, fecundity estimation, and larval culture of Spondylus calcifer (Carpenter, 1857) (Bivalvia: Spondylidae). J. Shell Res. 29(1):143-149. https://doi.org/10.2983/035.029.0108 DOI: https://doi.org/10.2983/035.029.0108
Spencer BE. 2002. Molluscan Shellfish Farming. Oxford (UK):Blackwell Publishing. 274 p. DOI: https://doi.org/10.1002/9780470995709
Sühnel S, Squella FJL, da Silva FC, de Melo CMR. 2024. Water exchange rate and stocking density on the larviculture of the scallop Nodipecten nodosus in recirculation aquaculture system. Aquaculture 589:740922. https://doi.org/10.1016/j.aquaculture.2024.740922 DOI: https://doi.org/10.1016/j.aquaculture.2024.740922
Supan J. 2014. High-Density Rearing of Oyster Larvae in Flow-Through Systems. Fact sheet. N° 4311. Stoneville (USA): Southern Regional Aquaculture Center (SRAC). 5 p.
Tidwell J. 2012. Aquaculture production systems. Oxford (UK):Wiley-Blackwell. 421 p. DOI: https://doi.org/10.1002/9781118250105
Torkildsen L, Magnesen T. 2004. Hatchery Production of Scallop Larvae (Pecten maximus) – Survival in Different Rearing Systems. Aquacult Int. 12(4–5):489-507. https://doi.org/10.1023/B:AQUI.0000042143.53903.21 DOI: https://doi.org/10.1023/B:AQUI.0000042143.53903.21
Turini CS, Sühnel S, Lagreze-Squella FJ, Ferreira JF, de Melo CMR. 2014. Effects of stocking-density in flow-through system on the mussel Perna perna larval survival. Acta Sci Anim Sci. 36(3):247. https://doi.org/10.4025/actascianimsci.v36i3.23685 DOI: https://doi.org/10.4025/actascianimsci.v36i3.23685
Velasco LA, Barros J, Acosta E. 2007. Spawning induction and early development of the Caribbean scallops Argopecten nucleus and Nodipecten nodosus. Aquaculture. 266(1–4):153-165. https://doi.org/10.1016/j.aquaculture.2007.02.015 DOI: https://doi.org/10.1016/j.aquaculture.2007.02.015
Vinatea L, Andreatta ER. 1997. Comparative study of continuous and static water renewal strategies in the larviculture of Penaeus paulensis (Pérez Farfante, 1967) associated with high stocking densities and different water renewal rates. Aquaculture. 154(3–4):247-259. https://doi.org/10.1016/S0044-8486(97)00054-9 DOI: https://doi.org/10.1016/S0044-8486(97)00054-9
Walne PR, Spencer BE. 1974. Experiments on the growth and food conversion efficiency of the spat of Ostrea edulis L in a recirculation system. ICES J Mar Sci. 35(3): 303-318. https://doi.org/10.1093/icesjms/35.3.303 DOI: https://doi.org/10.1093/icesjms/35.3.303
Winkler FM, Estévez BF. 2003. Effects of self-fertilization on growth and survival of larvae and juveniles of the scallop Argopecten purpuratus L. J Exp Mar Biol Ecol. 292(1):93-102. https://doi.org/10.1016/S0022-0981(03)00147-3 DOI: https://doi.org/10.1016/S0022-0981(03)00147-3
Wolff M. 1988. Spawning and recruitment in the Peruvian scallop Argopecten purpuratus. Mar Ecol Prog Ser. 42:213-217. https://doi.org/10.3354/meps042213 DOI: https://doi.org/10.3354/meps042213
Yu XB, Zhao Z, Tang R, Xiong B, Wu ZL, Su SQ, Yao WZ. 2020. Assessment of the environmental purification of triangle sail mussel (Hyriopsis cumingii) in recirculating aquaculture systems. Appl Ecol Environ Res. 18(2):3439-3454. DOI: https://doi.org/10.15666/aeer/1802_34393454