Eastern Oyster (Crassostrea virginica) nursery production in tropical coastal lagoons in Yucatán, Mexico: nonlinear regression modeling and relationships with environmental variables

Main Article Content

Magda E Domínguez-Machín
https://orcid.org/0009-0003-8233-9269
Alfredo Hernández-Llamas
https://orcid.org/0000-0001-6369-6963
Álvaro Hernández-Flores
https://orcid.org/0000-0003-1900-9868
Miguel A Vela-Magaña
https://orcid.org/0000-0001-8909-4266

Abstract

Nonlinear regression modeling was used to study the nursery production of the oyster Crassostrea virginica in the Celestún (CL) and Rio Lagartos (RL) lagoons in Yucatán, Mexico. Relationships between production parameters and environmental variables were also established. Spat (2.40 ± 0.20 mm) was obtained from a hatchery and reared in Nestier-​type trays using an off-bottom system. Oyster cultivation took place from May 2021 to September 2021 and ended after 122–126 days when oysters reached 30.00 mm. There were no significant differences in final height (CL: 30.80 ± 0.42 mm; RL: 31.80 ± 0.65 mm; P = 0.18) and growth rate (CL: 0.23 ± 0.02 mm·d–1; RL: 0.23 ± 0.01 mm·d–1; P = 0.98). Final survival was 71.45% in CL and 99.40% in RL. Nonlinear regression curves were statistically satisfactory for analyzing growth and survival. Except for dissolved oxygen, mean salinity (CL: 15.23 ppt; RL: 35.02 ppt), temperature (CL: 29.64 °C; RL: 31.02 °C), dissolved oxygen (CL: 4.50 mg·L–1; RL: 5.04 mg·L–1), pH (CL: 8.10; RL: 8.34), chlorophyll a (Chl a) (CL: 3.23 mg·m–3; RL: 6.85 mg·m–3), and total dissolved solids (CL: 16,101 mg·L–1; RL: 34,838 mg·L–1) were significantly higher in RL (P < 0.05). Except for Chl a, the environmental variables were more stable in RL than in CL (P < 0.05). In RL, the growth rate was positively related to salinity and pH. In CL, the growth rate slowed when salinity decreased, and the mortality rate diminished when salinity, dissolved oxygen, and total dissolved solids increased and pH decreased. Salinity was mainly responsible for the observed differences in production between lagoons. Even when temperature and salinity were high in RL, acceptable growth rate and survival were observed, possibly due to stable rearing conditions.

Downloads

Download data is not yet available.

Article Details

How to Cite
Domínguez-Machín, M. E., Hernández-Llamas, A., Hernández-Flores, Álvaro, & Vela-Magaña, M. A. (2024). Eastern Oyster (Crassostrea virginica) nursery production in tropical coastal lagoons in Yucatán, Mexico: nonlinear regression modeling and relationships with environmental variables. Ciencias Marinas, 50. https://doi.org/10.7773/cm.y2024.3447
Section
Research Article

Metrics

References

Adjovu E, Stephen H, James D, Ahmad S. 2023. Measurement of total dissolved solids and total suspended solids in water systems: A Review of the Issues, Conventional, and Remote Sensing Techniques. Remote Sens. 15(14):3534. https://doi.org/10.3390/rs15143534

Baker SM, Mann R. 1992. Effects of hypoxia and anoxia on larval settlement, juvenile growth, and juvenile survival of the oyster Crassostrea virginica. Biol Bull. 182(2):265-269. https://doi.org/10.2307/1542120

Beniash E, Ivanina A, Lieb NS, Kurochkin I, Sokolova IM. 2010. Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica. Mar Ecol Prog Ser. 419:95-108. https://doi.org/10.3354/meps08841

Bishop MJ, Hooper P. 2005. Flow, stocking density and treatment against Polydora spp.: Influences on nursery growth and mortality of the oysters Crassostrea virginica and C. ariakensis. Aquaculture. 246(1-4):251-261. https://doi.org/10.1016/j.aquaculture.2005.01.021

Bodenstein S, Walton WC, Steury TD. 2021. Effect of farming practices on growth and mortality rates in triploid and diploid eastern oysters Crassostrea virginica. Aquacult Environ Interact. 13:33-40. https://doi.org/10.3354/aei00387

Bodenstein S, Callam BR, Walton WC, Rikard SF, Tiersch TR, La Peyre JF. 2023. Survival and growth of triploid eastern oysters, Crassostrea virginica, produced from wild diploids collected from low-salinity areas. Aquaculture. 564:739032. https://doi.org/10.1016/j.aquaculture.2022.739032

Boyd CE. 2020. Dissolved Solids. In: Boyd CE (ed.), Water Quality: An Introduction. Cham (Switzerland): Springer. p. 83-118. https://doi.org/10.1007/978-3-030-23335-8_5

Cabrera-Rodríguez P, Aldana D, Brulé T, Amador E. 1997. Culture of the American oyster, Crassostrea virginica (Gmelin 1971) in Rio Lagartos, Yucatán, México. Aquac Res. 28(8):611-619. https://doi.org/10.1046/j.1365-2109.1997.00902.x

Calabrese AF, Davis H. 1966. The pH tolerance of embryos and larvae of Mercenaria mercenaria and Crassostrea virginica. Bio Bull. 131(3):427-436. https://doi.org/10.2307/1539982

Clements JC, Carver CE, Mallet MA, Comeau LA, Mallet AL. 2021. CO2-induced low pH in an eastern oyster (Crassostrea virginica) hatchery positively affects reproductive development and larval survival but negatively affects larval shape and size, with no intergenerational linkages. ICES J Mar Sci. 78(1):349-359. https://doi.org/10.1093/icesjms/fsaa089

[CONAPESCA] Comisión Nacional de Pesca y Acuacultura. 2022. Títulos acuícolas otorgados: CONAPESCA; [accessed 2022 Oct 27]. https://acuasesor.conapesca.gob.mx/transparencia_permisos.php

Coxe N, Casas SM, Marshall DA, La Peyre MK, Kelly MW, La Peyre JF. 2023. Differential hypoxia tolerance of eastern oysters from the northern Gulf of Mexico at elevated temperature. J Exp Mar Bio Ecol. 559:151840. https://doi.org/10.1016/j.jembe.2022.151840

Crosby M, Newell R, Langdon C. 1990. Bacterial mediation in the utilization of carbon and nitrogen from detrital complexes by Crassostrea virginica. Limnol Oceanogr. 35(3):625-639. https://doi.org/10.4319/LO.1990.35.3.0625

Estrada-Pérez N, Hernández-Llamas A, Ruiz-Velazco M. 2018. Stochastic modelling of aquaponic production of tilapia (Oreochromis niloticus) with lettuce (Lactuca sativa) and cucumber (Cucumis sativus). Aquac Res. 49(12):3723-3734. https://doi.org/10.1111/are.13840

Forkman J. 2009. Estimator and tests for common coefficients of variation in normal distributions. Commun Stat-Theory Methods. 38(2):233-251. https://dx.doi.org/10.1080/03610920802187448

Grizzle R, Ward K, Burdick D, Payne A, Berlinsky D. 2020. Eastern Oyster Crassostrea virginica growth and mortality in New Hampshire (USA) using off‐bottom farm gear. N Am J Aquac. 82(2):132-142. https://doi.org/10.1002/naaq.10135

Hardage K, Street J, Herrera-Silveira JA. 2022. Late Holocene environmental change in Celestún Lagoon, Yucatán, Mexico. J Paleolimnol. 67:131-162. https://doi.org/10.1007/s10933-021-00227-4

Heilmayer O, Digialleonardo J, Qian L, Roesijadi G. 2008. Stress tolerance of a subtropical Crassostrea virginica population to the combined effects of temperature and salinity. Estuar Coast Shelf Sci. 79(1):179-185. https://doi.org/10.1016/j.ecss.2008.03.022

Herrera-Silveira JA, Ramírez-Ramírez J. 1998. Salinity and nutrients in the coastal lagoons of Yucatan, Mexico. SIL Proc. 1922-2010. 26(3):1473-1478. https://doi.org/10.1080/03680770.1995.11900971

La Peyre MK, Eberlin BS, Soniat TM, La Peyre JF. 2013. Differences in extreme low salinity timing and duration differentially affect eastern oyster (Crassostrea virginica) size class growth and mortality in Breton Sound, LA. Estuar Coast Shelf Sci. 135:146-157. https://doi.org/10.1016/j.ecss.2013.10.001

Langdon C, Newell R. 1990. Utilization of detritus and bacteria as food source by two bivalve suspension-feeders, the oyster Crassostrea virginica and the mussel Geukensia demissa. Mar Ecol Prog Ser. 58:299-310. https://doi.org/10.3354/meps058299

Lavaud R, La Peyre MK, Casas SM, Bacher C, La Peyre JF. 2017. Integrating the effects of salinity on the physiology of the eastern oyster, Crassostrea virginica, in the northern Gulf of Mexico through a Dynamic Energy Budget model. Ecol Model. 363:221-233. https://doi.org/10.1016/j.ecolmodel.2017.09.003

Leonhardt JM, Casas S, Supan JE, La Peyre JF. 2017. Stock assessment for eastern oyster seed production and field grow-out in Louisiana. Aquaculture. 466:9-19. https://doi.org/10.1016/j.aquaculture.2016.09.034

Lowe MR, Sehlinger T, Soniat TM, La Peyre MK. 2017. Interactive effects of water temperature and salinity on growth and mortality of eastern oysters, Crassostrea virginica: a meta-analysis using 40 years of monitoring data. J Shellfish Res. 36(3):683-697. https://doi.org/10.2983/035.036.0318

Maeda-Martínez AN, García-Murillo AG, Espinosa-Chaurand D, Garza-Torres R, García-Morales R. 2023. Growth, survival, and morphometric relationships of Crassostrea corteziensis cultivated during the nursery stage in oyster bags at different tidal levels, in Boca de Camichín, Nayarit, Mexico = Crecimiento, supervivencia y relaciones morfométricas de Crassostrea corteziensis cultivado en costales ostrícolas durante la etapa de preengorda, a diferentes niveles de marea en Boca de Camichín, Nayarit, México. Cienc Mar. 49:3388. https://doi.org/10.7773/cm.y2023.3388

Mallet A, Carver C, Doiron S, Thériault MH. 2013. Growth performance of eastern oysters Crassostrea virginica in Atlantic Canada: effect of the culture gear. Aquaculture. 396-399:1-7. https://doi.org/10.1016/j.aquaculture.2013.02.019

Marshall DA, Casas SM, Walton WC, Rikard FS, Palmer TA, Breaux N, La Peyre MK, Beseres J, Kelly M, La Peyre JF. 2021. Divergence in salinity tolerance of northern Gulf of Mexico eastern oysters under field and laboratory exposure. Conserv Physiol. 9(1):coab065. https://doi.org/10.1093/conphys/coab065

McFarland K, Donaghy L, Volety A. 2013. Effect of acute salinity changes on hemolymph osmolality and clearance rate of the non-native mussel, Perna viridis, and the native oyster, Crassostrea virginica, in Southwest Florida. Aquat Invasions. 8(3):299-310. http://dx.doi.org/10.3391/ai.2013.8.3.06

McFarland K, Vignier J, Standen E, Volety AK. 2022. Synergistic effects of salinity and temperature on the eastern oyster Crassostrea virginica throughout the lifespan. Mar Ecol Prog Ser. 700:111-124. https://doi.org/10.3354/meps14178

Morelos-Villegas AD, Condal A, Ardisson PL. 2018. Spatial heterogeneity and seasonal structure of physical factors and benthic species in a tropical coastal lagoon, Celestun, Yucatan Peninsula. Reg Stud Mar Sci. 22:136-146. https://doi.org/10.1016/j.rsma.2018.06.008

[NASA] National Aeronautics and Space Administration. 2022. Giovanni platform: NASA; [accessed 2024 April 25]. https://giovanni.gsfc.nasa.gov/giovanni

Piyathilaka M, Hettiarachchi M, Wanninayake W. 2012. Growth and health status of cultured edible oyster, Crassostrea madrasensis (Preston) in the Panadura estuary, Sri Lanka. J Natn Sci Found Sri Lanka. 40(3):201-210. http://dx.doi.org/10.4038/jnsfsr.v40i3.4694

Poirier LA, Clements JC, Sonier R, Lanteigne L, Nadeau A, Comeau LA. 2020. Testing the efficacy of bouncing-bucket nursery systems for enhancing shell strength and thickness in on-bottom cultured Eastern oysters (Crassostrea virginica). Aquacult Eng. 90:102101. https://doi.org/10.1016/j.aquaeng.2020.102101

Ratkowsky DA. 1983. Non-linear Regression Modeling: A Unified Practical Approach. New York: Marcel Dekker. 276 p.

Rihani VA, Torres R, Peraza J, Mendoza I, Domínguez F. 1989. Información Básica de la Actividad Pesquera en Yucatán, 1988. First edition. México: Gobierno del Estado de Yucatán. 59 p.

Rybovich M, La Peyre MK, Hall SG, La Peyre JF. 2016. Increased temperatures combined with lowered salinities differentially impact oyster size class growth and mortality. J Shellfish Res. 35(1):101-113. https://doi.org/10.2983/035.035.0112

Serna‐Gallo I, Ruiz‐Velazco JMJ, Acosta‐Salmón H, Peña‐Messina E, Torres‐Zepeda G, Saucedo PE. 2014. Growth and reproduction patterns of the winged pearl oyster, Pteria sterna, cultivated in tropical environments of Mexico: Implications for pearl farming = Patrones de crecimiento y reproducción de la concha nácar, Pteria sterna, cultivada en un ambiente tropical de México: Implicaciones para el cultivo de perlas. Cienc Mar. 40(2):75-88. https://doi.org/10.7773/cm.v40i2.2393

Shumway SE. 1996. Natural environmental factors. In: Kennedy VS, Newell RIE, Eble AF (eds.), The Eastern Oyster, Crassostrea virginica. College Park (USA): Maryland Sea Grant College. p. 467-513.

Snyder J, Boss E, Weatherbee R, Thomas AC, Brady D, Newell C. 2017. Oyster aquaculture site selection using Landsat 8-derived sea surface temperature, turbidity, and chlorophyll a. Front Mar Sci. 4:190. https://doi.org/10.3389/fmars.2017.00190

Stalker JC, Price RM, Rivera-Monroy VH, Herrera-Silveira J, Morales-Ojeda S, Benítez JA, Parra-Parra D. 2014. Hydrologic dynamics of a subtropical estuary using geochemical tracers, Celestún, Yucatan, Mexico. Est Coast. 37:1376-1387. https://doi.org/10.1007/s12237-014-9778-5

Thomas L, Allen SK, Plough LV. 2019. The effect of aquaculture gear on the growth and shape of the oyster Crassostrea virginica during a “finishing period” in Chesapeake Bay, USA. Aquaculture. 508:1-9. https://doi.org/10.1016/j.aquaculture.2019.03.061

Vega-Cendejas MaE, Hernández M. 2004. Fish community structure and dynamics in a coastal hypersaline lagoon: Rio Lagartos, Yucatán, Mexico. Estuar Coast Shelf Sci. 60(2):285-299. https://doi.org/10.1016/j.ecss.2004.01.005

Vera DA, Aldana DA. 2000. Crecimiento y sobre vivencia de semillas del ostión: Crassostrea virginica en una granja camaronícola en Yucatán, México. Rev Biol Trop. 48:1-17.

Most read articles by the same author(s)