Preengorda del Ostión Americano (Crassostrea virginica) en lagunas costeras tropicales en Yucatán, México: modelación de regresión no lineal y relaciones con variables ambientales
Contenido principal del artículo
Resumen
Se usaron modelos de regresión no lineal para analizar la producción en preengorda de Crassostrea virginica en 2 lagunas costeras de Yucatán, México: Celestún (CL) y Río Lagartos (RL). Adicionalmente, se establecieron relaciones entre la producción y las variables ambientales. Las semillas (2.40 ± 0.2 mm) se cultivaron en suspensión de mayo a septiembre 2021 en canastas Nestier durante 122-126 días, hasta que los ostiones alcanzaron 30.00 mm. No hubo diferencias significativas en la altura final (CL: 30.80 ± 0.42 mm; RL: 31.80 ± 0.65 mm; P = 0.18) ni en la tasa de crecimiento (CL: 0.23 ± 0.02 mm·d–1; RL: 0.23 ± 0.01 mm·d–1; P = 0.98) entre sitios. La supervivencia fue 71.40% en CL y 99.40% en RL. Las curvas de regresión no lineal resultaron estadísticamente satisfactorias para analizar el crecimiento y la supervivencia. La salinidad (CL: 15.23 ppt; RL: 35.02 ppt), la temperatura (CL: 29.64 °C; RL: 31.02 °C), el oxígeno disuelto (CL: 4.50 mg·L–1; RL: 5.04 mg·L–1), el pH (CL: 8.10; RL: 8.34), la clorofila a (Cl a) (CL: 3.23 mg·m–3; RL: 6.85 mg·m–3) y los sólidos disueltos totales (CL: 16,101 mg·L–1; RL: 34,838 mg·L–1) fueron superiores en RL (P < 0.05). Exceptuando la Cl a, las variables fueron más estables en RL (P < 0.05). En RL, el crecimiento se relacionó positivamente con la salinidad y el pH. En CL, el crecimiento disminuyó al bajar la salinidad, y la mortalidad disminuyó cuando la salinidad, el oxígeno disuelto y el total de sólidos disueltos se incrementaron y el pH disminuyó. La salinidad fue determinante para la diferencia en producción entre las lagunas. En RL, el crecimiento y la supervivencia fueron aceptables aun con temperaturas y salinidades relativamente elevadas, posiblemente debido a las condiciones estables de cultivo.
Descargas
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Este es un artículo de acceso abierto distribuido bajo una licencia Creative Commons Attribution 4.0, que le permite compartir y adaptar el trabajo, siempre que dé el crédito apropiado al autor o autores originales y la fuente, proporcione un enlace a Creative Commons licencia, e indicar si se realizaron cambios. Las figuras, tablas y otros elementos del artículo están incluidos en la licencia CC BY 4.0 del artículo, a menos que se indique lo contrario. El título de la revista está protegido por derechos de autor y no está sujeto a esta licencia. La escritura de licencia completa se puede ver aquí.
Métrica
Citas
Adjovu E, Stephen H, James D, Ahmad S. 2023. Measurement of total dissolved solids and total suspended solids in water systems: A Review of the Issues, Conventional, and Remote Sensing Techniques. Remote Sens. 15(14):3534. https://doi.org/10.3390/rs15143534
Baker SM, Mann R. 1992. Effects of hypoxia and anoxia on larval settlement, juvenile growth, and juvenile survival of the oyster Crassostrea virginica. Biol Bull. 182(2):265-269. https://doi.org/10.2307/1542120
Beniash E, Ivanina A, Lieb NS, Kurochkin I, Sokolova IM. 2010. Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica. Mar Ecol Prog Ser. 419:95-108. https://doi.org/10.3354/meps08841
Bishop MJ, Hooper P. 2005. Flow, stocking density and treatment against Polydora spp.: Influences on nursery growth and mortality of the oysters Crassostrea virginica and C. ariakensis. Aquaculture. 246(1-4):251-261. https://doi.org/10.1016/j.aquaculture.2005.01.021
Bodenstein S, Walton WC, Steury TD. 2021. Effect of farming practices on growth and mortality rates in triploid and diploid eastern oysters Crassostrea virginica. Aquacult Environ Interact. 13:33-40. https://doi.org/10.3354/aei00387
Bodenstein S, Callam BR, Walton WC, Rikard SF, Tiersch TR, La Peyre JF. 2023. Survival and growth of triploid eastern oysters, Crassostrea virginica, produced from wild diploids collected from low-salinity areas. Aquaculture. 564:739032. https://doi.org/10.1016/j.aquaculture.2022.739032
Boyd CE. 2020. Dissolved Solids. In: Boyd CE (ed.), Water Quality: An Introduction. Cham (Switzerland): Springer. p. 83-118. https://doi.org/10.1007/978-3-030-23335-8_5
Cabrera-Rodríguez P, Aldana D, Brulé T, Amador E. 1997. Culture of the American oyster, Crassostrea virginica (Gmelin 1971) in Rio Lagartos, Yucatán, México. Aquac Res. 28(8):611-619. https://doi.org/10.1046/j.1365-2109.1997.00902.x
Calabrese AF, Davis H. 1966. The pH tolerance of embryos and larvae of Mercenaria mercenaria and Crassostrea virginica. Bio Bull. 131(3):427-436. https://doi.org/10.2307/1539982
Clements JC, Carver CE, Mallet MA, Comeau LA, Mallet AL. 2021. CO2-induced low pH in an eastern oyster (Crassostrea virginica) hatchery positively affects reproductive development and larval survival but negatively affects larval shape and size, with no intergenerational linkages. ICES J Mar Sci. 78(1):349-359. https://doi.org/10.1093/icesjms/fsaa089
[CONAPESCA] Comisión Nacional de Pesca y Acuacultura. 2022. Títulos acuícolas otorgados: CONAPESCA; [accessed 2022 Oct 27]. https://acuasesor.conapesca.gob.mx/transparencia_permisos.php
Coxe N, Casas SM, Marshall DA, La Peyre MK, Kelly MW, La Peyre JF. 2023. Differential hypoxia tolerance of eastern oysters from the northern Gulf of Mexico at elevated temperature. J Exp Mar Bio Ecol. 559:151840. https://doi.org/10.1016/j.jembe.2022.151840
Crosby M, Newell R, Langdon C. 1990. Bacterial mediation in the utilization of carbon and nitrogen from detrital complexes by Crassostrea virginica. Limnol Oceanogr. 35(3):625-639. https://doi.org/10.4319/LO.1990.35.3.0625
Estrada-Pérez N, Hernández-Llamas A, Ruiz-Velazco M. 2018. Stochastic modelling of aquaponic production of tilapia (Oreochromis niloticus) with lettuce (Lactuca sativa) and cucumber (Cucumis sativus). Aquac Res. 49(12):3723-3734. https://doi.org/10.1111/are.13840
Forkman J. 2009. Estimator and tests for common coefficients of variation in normal distributions. Commun Stat-Theory Methods. 38(2):233-251. https://dx.doi.org/10.1080/03610920802187448
Grizzle R, Ward K, Burdick D, Payne A, Berlinsky D. 2020. Eastern Oyster Crassostrea virginica growth and mortality in New Hampshire (USA) using off‐bottom farm gear. N Am J Aquac. 82(2):132-142. https://doi.org/10.1002/naaq.10135
Hardage K, Street J, Herrera-Silveira JA. 2022. Late Holocene environmental change in Celestún Lagoon, Yucatán, Mexico. J Paleolimnol. 67:131-162. https://doi.org/10.1007/s10933-021-00227-4
Heilmayer O, Digialleonardo J, Qian L, Roesijadi G. 2008. Stress tolerance of a subtropical Crassostrea virginica population to the combined effects of temperature and salinity. Estuar Coast Shelf Sci. 79(1):179-185. https://doi.org/10.1016/j.ecss.2008.03.022
Herrera-Silveira JA, Ramírez-Ramírez J. 1998. Salinity and nutrients in the coastal lagoons of Yucatan, Mexico. SIL Proc. 1922-2010. 26(3):1473-1478. https://doi.org/10.1080/03680770.1995.11900971
La Peyre MK, Eberlin BS, Soniat TM, La Peyre JF. 2013. Differences in extreme low salinity timing and duration differentially affect eastern oyster (Crassostrea virginica) size class growth and mortality in Breton Sound, LA. Estuar Coast Shelf Sci. 135:146-157. https://doi.org/10.1016/j.ecss.2013.10.001
Langdon C, Newell R. 1990. Utilization of detritus and bacteria as food source by two bivalve suspension-feeders, the oyster Crassostrea virginica and the mussel Geukensia demissa. Mar Ecol Prog Ser. 58:299-310. https://doi.org/10.3354/meps058299
Lavaud R, La Peyre MK, Casas SM, Bacher C, La Peyre JF. 2017. Integrating the effects of salinity on the physiology of the eastern oyster, Crassostrea virginica, in the northern Gulf of Mexico through a Dynamic Energy Budget model. Ecol Model. 363:221-233. https://doi.org/10.1016/j.ecolmodel.2017.09.003
Leonhardt JM, Casas S, Supan JE, La Peyre JF. 2017. Stock assessment for eastern oyster seed production and field grow-out in Louisiana. Aquaculture. 466:9-19. https://doi.org/10.1016/j.aquaculture.2016.09.034
Lowe MR, Sehlinger T, Soniat TM, La Peyre MK. 2017. Interactive effects of water temperature and salinity on growth and mortality of eastern oysters, Crassostrea virginica: a meta-analysis using 40 years of monitoring data. J Shellfish Res. 36(3):683-697. https://doi.org/10.2983/035.036.0318
Maeda-Martínez AN, García-Murillo AG, Espinosa-Chaurand D, Garza-Torres R, García-Morales R. 2023. Growth, survival, and morphometric relationships of Crassostrea corteziensis cultivated during the nursery stage in oyster bags at different tidal levels, in Boca de Camichín, Nayarit, Mexico = Crecimiento, supervivencia y relaciones morfométricas de Crassostrea corteziensis cultivado en costales ostrícolas durante la etapa de preengorda, a diferentes niveles de marea en Boca de Camichín, Nayarit, México. Cienc Mar. 49:3388. https://doi.org/10.7773/cm.y2023.3388
Mallet A, Carver C, Doiron S, Thériault MH. 2013. Growth performance of eastern oysters Crassostrea virginica in Atlantic Canada: effect of the culture gear. Aquaculture. 396-399:1-7. https://doi.org/10.1016/j.aquaculture.2013.02.019
Marshall DA, Casas SM, Walton WC, Rikard FS, Palmer TA, Breaux N, La Peyre MK, Beseres J, Kelly M, La Peyre JF. 2021. Divergence in salinity tolerance of northern Gulf of Mexico eastern oysters under field and laboratory exposure. Conserv Physiol. 9(1):coab065. https://doi.org/10.1093/conphys/coab065
McFarland K, Donaghy L, Volety A. 2013. Effect of acute salinity changes on hemolymph osmolality and clearance rate of the non-native mussel, Perna viridis, and the native oyster, Crassostrea virginica, in Southwest Florida. Aquat Invasions. 8(3):299-310. http://dx.doi.org/10.3391/ai.2013.8.3.06
McFarland K, Vignier J, Standen E, Volety AK. 2022. Synergistic effects of salinity and temperature on the eastern oyster Crassostrea virginica throughout the lifespan. Mar Ecol Prog Ser. 700:111-124. https://doi.org/10.3354/meps14178
Morelos-Villegas AD, Condal A, Ardisson PL. 2018. Spatial heterogeneity and seasonal structure of physical factors and benthic species in a tropical coastal lagoon, Celestun, Yucatan Peninsula. Reg Stud Mar Sci. 22:136-146. https://doi.org/10.1016/j.rsma.2018.06.008
[NASA] National Aeronautics and Space Administration. 2022. Giovanni platform: NASA; [accessed 2024 April 25]. https://giovanni.gsfc.nasa.gov/giovanni
Piyathilaka M, Hettiarachchi M, Wanninayake W. 2012. Growth and health status of cultured edible oyster, Crassostrea madrasensis (Preston) in the Panadura estuary, Sri Lanka. J Natn Sci Found Sri Lanka. 40(3):201-210. http://dx.doi.org/10.4038/jnsfsr.v40i3.4694
Poirier LA, Clements JC, Sonier R, Lanteigne L, Nadeau A, Comeau LA. 2020. Testing the efficacy of bouncing-bucket nursery systems for enhancing shell strength and thickness in on-bottom cultured Eastern oysters (Crassostrea virginica). Aquacult Eng. 90:102101. https://doi.org/10.1016/j.aquaeng.2020.102101
Ratkowsky DA. 1983. Non-linear Regression Modeling: A Unified Practical Approach. New York: Marcel Dekker. 276 p.
Rihani VA, Torres R, Peraza J, Mendoza I, Domínguez F. 1989. Información Básica de la Actividad Pesquera en Yucatán, 1988. First edition. México: Gobierno del Estado de Yucatán. 59 p.
Rybovich M, La Peyre MK, Hall SG, La Peyre JF. 2016. Increased temperatures combined with lowered salinities differentially impact oyster size class growth and mortality. J Shellfish Res. 35(1):101-113. https://doi.org/10.2983/035.035.0112
Serna‐Gallo I, Ruiz‐Velazco JMJ, Acosta‐Salmón H, Peña‐Messina E, Torres‐Zepeda G, Saucedo PE. 2014. Growth and reproduction patterns of the winged pearl oyster, Pteria sterna, cultivated in tropical environments of Mexico: Implications for pearl farming = Patrones de crecimiento y reproducción de la concha nácar, Pteria sterna, cultivada en un ambiente tropical de México: Implicaciones para el cultivo de perlas. Cienc Mar. 40(2):75-88. https://doi.org/10.7773/cm.v40i2.2393
Shumway SE. 1996. Natural environmental factors. In: Kennedy VS, Newell RIE, Eble AF (eds.), The Eastern Oyster, Crassostrea virginica. College Park (USA): Maryland Sea Grant College. p. 467-513.
Snyder J, Boss E, Weatherbee R, Thomas AC, Brady D, Newell C. 2017. Oyster aquaculture site selection using Landsat 8-derived sea surface temperature, turbidity, and chlorophyll a. Front Mar Sci. 4:190. https://doi.org/10.3389/fmars.2017.00190
Stalker JC, Price RM, Rivera-Monroy VH, Herrera-Silveira J, Morales-Ojeda S, Benítez JA, Parra-Parra D. 2014. Hydrologic dynamics of a subtropical estuary using geochemical tracers, Celestún, Yucatan, Mexico. Est Coast. 37:1376-1387. https://doi.org/10.1007/s12237-014-9778-5
Thomas L, Allen SK, Plough LV. 2019. The effect of aquaculture gear on the growth and shape of the oyster Crassostrea virginica during a “finishing period” in Chesapeake Bay, USA. Aquaculture. 508:1-9. https://doi.org/10.1016/j.aquaculture.2019.03.061
Vega-Cendejas MaE, Hernández M. 2004. Fish community structure and dynamics in a coastal hypersaline lagoon: Rio Lagartos, Yucatán, Mexico. Estuar Coast Shelf Sci. 60(2):285-299. https://doi.org/10.1016/j.ecss.2004.01.005
Vera DA, Aldana DA. 2000. Crecimiento y sobre vivencia de semillas del ostión: Crassostrea virginica en una granja camaronícola en Yucatán, México. Rev Biol Trop. 48:1-17.