Distribution and potential activity of aerobic denitrifying bacteria isolated from sediments of a coastal lagoon system in northwestern Mexico
Main Article Content
Abstract
Denitrification is the primary pathway by which fixed nitrogen is lost from marine systems and consists of the sequential respiration of nitrate into molecular nitrogen by diverse heterotrophic microorganisms. Since estuarine sediments serve as important niches for denitrification, this study assessed the distribution and potential activity of aerobic denitrifying bacteria isolated from sediments at 2 depths and 2 habitats (with Zostera marina seagrass and without seagrass) along a transect in Bahía de San Quintín (Mexico), and their relationship with various environmental parameters. A total of 1,611 bacteria were isolated, of which 85.1% carried denitrifying genes (nirK, nirS, or nosZ). Their distribution was heterogeneous in the bay and was primarily influenced by sediment texture, pH, total organic carbon, and total nitrogen, with the highest abundance of denitrifying bacteria in surface sediments (66.2%). The denitrifying isolates were classified into 23 species belonging to γ-Proteobacteria (82.4% of isolates), α-Proteobacteria (7.9%), Bacilli (5.7%), and Actinobacteria (4%). Denitrifying activity in aerobic conditions was confirmed in 7 species of bacteria carrying denitrifying genes: Paracoccus marcusii, Planococcus maritimus, Planococcus rifietoensis, Pseudomonas songnenensis, Psychrobacter alimentarius, Psychrobacter celer, and Psychrobacter piscatorii. The results suggest that these sediments harbor a high abundance of culturable bacteria with nirK, nirS, or nosZ genes, although denitrification activity in aerobic conditions could not be confirmed in most cases, possibly due to the inactivity of these genes or those involved in nitrate reduction (nas, nar, or nap). This study represents the first step towards understanding the ecology of microorganisms involved in aerobic denitrification in Bahía de San Quintín and in coastal lagoons in general.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under a Creative Commons Attribution 4.0 License, which allows you to share and adapt the work, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Figures, tables and other elements in the article are included in the article’s CC BY 4.0 license, unless otherwise indicated. The journal title is protected by copyrights and not subject to this license. Full license deed can be viewed here.
Metrics
References
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol. 215(3):403-410. https://doi.org/10.1016/s0022-2836(05)80360-2
Braker G, Fesefeldt A, Witzel KP. 1998. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol. 64(10):3769-3775. https://doi.org/10.1128/AEM.64.10.3769-3775.1998
Cabezas A, Azziz G, Bovio-Winkler P, Fuentes L, Braga L, Wenzel J, Sabaris S, Tarlera S, Etchebehere C. 2022. Ubiquity and diversity of cold adapted denitrifying bacteria isolated from diverse Antarctic ecosystems. Front Microbiol. 13:827228. https://doi.org/10.3389/fmicb.2022.827228
Camacho-Ibar VF, Carriquiry JD, Smith SV. 2003. Non-conservative P and N fluxes and net ecosystem production in San Quintin Bay, Mexico. Estuar Coast 26(5):1220-1237. http://dx.doi.org/10.1007/BF02803626
Canu DM, Aveytua-Alcázar L, Camacho-Ibar VF, Querin S, Solidoro C. 2016. Hydrodynamic properties of San Quintin Bay, Baja California: merging models and observations. Mar Pollut. 108:203-214. https://doi.org/10.1016/j.marpolbul.2016.04.030
Chen Z, Jiang Y, Chang Z, Wang J, Song X, Huang Z, Chen S, Li J. 2020. Denitrification characteristics and pathways of a facultative anaerobic denitrifying strain, Pseudomonas denitrificans G1. J Biosci Bioeng. 129(6):715-722. https://doi.org/10.1016/j.jbiosc.2019.12.011
Cheng L, Abraham J, Trenberth KE, Fasullo J, Boyer T, Mann ME, Zhu J, Wang F, Locarnini R, Li Y, et al. 2022. Another record: ocean warming continues through 2021 despite La Niña conditions. Adv Atmos Sci. 39:373-385. https://doi.org/10.1007/s00376-022-1461-3
Cheng HY, Xu AA, Awasthi MK, Kong DD, Chen JS, Wang YF, Xu P. 2020. Aerobic denitrification performance and nitrate removal pathway analysis of a novel fungus Fusarium solani RADF–77. Bioresour Technol. 295:122250. https://doi.org/10.1016/j.biortech.2019.122250
Ciccarelli FD, Doerks T, Von Mering C, Creevey CJ, Snel B, Bork P. 2006. Toward automatic reconstruction of a highly resolved tree of life. Science. 311(5765):1283-1287. https://doi.org/10.1126/science.1123061
Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras–Alfaro A, Kuske CR, Tiedje JM. 2014. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42(D1):D633-D642. https://doi.org/10.1093/nar/gkt1244
Damashek J, Francis CA. 2018. Microbial nitrogen cycling in estuaries: from genes to ecosystem processes. Estuar Coast. 41:626-660. https://doi.org/10.1007/s12237-017-0306-2
Devol A. 2015. Denitrification, anammox, and N2 production in marine sediments. Annu Rev Mar Sci. 7:403-423. https://doi.org/10.1146/annurev-marine-010213-135040
Eyre BD, Maher DT, Sanders C. 2016. The contribution of denitrification and burial to the nitrogen budgets of three geomorphically distinct Australian estuaries: Importance of seagrass habitats. Limnol Oceanogr. 61:1144-1156. https://doi.org/10.1002/lno.10280
Feng L, Yang J, Ma F, Pi S, Xing L, Li A. 2020. Characterisation of Pseudomonas stutzeri T13 for aerobic denitrification: stoichiometry and reaction kinetics. Sci Total Environ. 717:135181. https://doi.org/10.1016/j.scitotenv.2019.135181
Gao H, Schreiber F, Collins G, Jensen MM, Kostka JE, Lavik G, de Beer D, Zhou H, Kuypers MM. 2010. Aerobic denitrification in permeable Wadden Sea sediments. ISME J. 4(3):417-426. https://doi.org/10.1038/ismej.2009.127
Graf DR, Jones CM, Hallin S. 2014. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS One. 9(12):e114118. https://doi.org/10.1371/journal.pone.0114118
Gu Z, Eils R, Schlesner M. 2016. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinform. 32(18):2847-2849. https://doi.org/10.1093/bioinformatics/btw313
Hall TA. 1999. BioEdit: a user–friendly biological sequence alignment editor and analysis program for windows 95/98nt. Nucleic Acids Symp Ser. 41(41):95-98.
Hallin S, Lindgren PE. 1999. PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Appl Environ Microbiol. 65(4):1652-1657. https://doi.org/10.1128/AEM.65.4.1652-1657.1999
Harrell F. 2021. ‘Hmisc’: Harrell miscellaneous. R package v. 4.6-0. https://hbiostat.org/R/Hmisc
Holding AJ, Colle JG. 1971. Routine biochemical tests. In: Norris JR, Ribbons DW (eds.), Methods in Microbiology (6A). London: Academic Press. p. 1-32.
Hutchins DA, Capone DG. 2022. The marine nitrogen cycle: new developments and global change. Nat Rev Microbiol. 20:401-414. https://doi.org/10.1038/s41579-022-00687-z
Jones CM, Graf DR, Bru D, Philippot L, Hallin S. 2013. The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink. ISME J. 7: 417-426. https://doi.org/10.1038/ismej.2012.125
Jones CM, Stres B, Rosenquist M, Hallin S. 2008. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Mol Biol Evol. 25:1955-1966. https://doi.org/10.1093/molbev/msn146
Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR. 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci. 82(20):6955-6959. https://doi.org/10.1073/pnas.82.20.6955
Lasek R, Dziewit L, Ciok A, Decewicz P, Romaniuk K, Jedrys Z, Wibberg D, Schlüter A, Pühler A, Bartosik D. 2017. Genome content, metabolic pathways and biotechnological potential of the psychrophilic Arctic bacterium Psychrobacter sp. DAB_AL43B, a source and a host of novel Psychrobacter–specific vectors. J Biotechnol. 263:64-74. https://doi.org/10.1016/j.jbiotec.2017.09.011
Lovely DR, Phillips EJ. 1987. Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microbiol. 53(7):1536-1540. https://doi.org/10.1128/aem.53.7.1536-1540.1987
Lu ZY, Gan L, Lin JJ, Chen ZL. 2019. Aerobic denitrification by Paracoccus sp. YF1 in the presence of Cu(II). Sci Total Environ. 658:80-86. https://doi.org/10.1016/j.scitotenv.2018.12.225
Marchant HK, Ahmerkamp S, Lavik G, Tegetmeyer HE, Graf J, Klatt JM, Holtappels M, Walpersdorf E, Kuypers MM. 2017. Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously. ISME J. 11:1799-1812. https://doi.org/10.1038/ismej.2017.51
Michotey V, Mejean V, Bonin P. 2000. Comparison of methods for quantification of cytochrome cd 1–denitrifying bacteria in environmental marine samples. Appl Environ Microbiol. 66(4):1564-1571. https://doi.org/10.1128/AEM.66.4.1564-1571.2000
Ming H, Fan J, Chen Q, Su J, Song J, Yuan J, Shi T, Li B. 2021. Diversity and abundance of denitrifying bacteria in the sediment of a eutrophic estuary. Geomicrobiol J. 38(3):199-209. https://doi.org/10.1080/01490451.2020.1822959
Myklestad SM, Skanoy E, Hestmann S. 1997. A sensitive and rapid method for analysis of dissolved mono– and polysaccharides in seawater. Mar Chem. 56:279-286. https://doi.org/10.1016/S0304-4203(96)00074-6
Navarro E, Daesslé LW, Camacho–Ibar VF, Ortiz–Hernández MC, Gutiérrez–Galindo EA. 2006. La geoquímica de Fe, Ti y Al como indicadora de la sedimentación volcanoclástica en la laguna costera de San Quintín, Baja California, México = Geochemistry of Fe, Ti and Al as an indicator of volcanoclastic sedimentation in San Quintín coastal lagoon, Baja California, Mexico. Cienc Mar. 32(2):205-217. https://doi.org/10.7773/cm.v32i21.1067
Oksanen J, Blanchet FG, Friendly M. 2021. ‘vegan’: Community Ecology Package. R package v. 2.6-4. https://CRAN.R-project.org/package=vegan
Pajares S, Ramos R. 2019. Processes and microorganisms involved in the marine nitrogen cycle: knowledge and gaps. Front Mar Sci. 6:739. https://doi.org/10.3389/fmars.2019.00739
Posit team. 2023. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.posit.co
Ravishankara AR, Daniel JS, Portmann RW. 2009. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science. 326(5949):123-125. https://doi.org/10.1126/science.1176985
Ribas-Ribas M, Hernández–Ayón JM, Camacho-Ibar VF, Cabello-Pasini A, Mejia-Trejo A, Durazo R, Galindo-Bect S, Souza AJ, Forja JM, Siqueiros-Valencia A. 2011. Effects of upwelling, tides and biological processes on the inorganic carbon system of a coastal lagoon in Baja California. Estuar Coast Shelf Sci. 95(4):367-376. https://doi.org/10.1016/j.ecss.2011.09.017
Robertson LA, Kuenen JG. 1984. Aerobic denitrification: a controversy revived. Arch Microbiol. 139(4):351-354. https://doi.org/10.1007/BF00408378
Samperio-Ramos G, Santana-Casiano JM, Gonzalez–Davila M. 2016. Effect of ocean warming and acidification on the Fe (II) oxidation rate in oligotrophic and eutrophic natural waters. Biogeochem. 128:19-34. https://doi.org/10.1007/s10533-016-0192-x
Samperio-Ramos G, Hernández-Sánchez O, Camacho-Ibar VF, Pajares S, Gutiérrez A, Sandoval-Gil JM, Reyes M, De Gyves S, Balint S, Oczkowski A, Ponce-Jahen SJ, Cervantes FJ. 2024. Ammonium loss microbiologically mediated by Fe(III) and Mn(IV) reduction along a coastal lagoon system. Chemosphere. 349:140933. https://doi.org/10.1016/j.chemosphere.2023.140933
Sánchez C, Minamisawa K. 2018. Redundant roles of Bradyrhizobium oligotrophicum Cu-type (nirK) and cd 1-type (nirS) nitrite reductase genes under denitrifying conditions. FEMS Microbiol Lett. 365(5):fny015. https://doi.org/10.1093/femsle/fny015
Scala DJ, Kerkhof LJ. 1998. Nitrous oxide reductase (nosZ) gene-specific PCR primers for detection of denitrifiers and three nosZ genes from marine sediments. FEMS Microbiol Lett. 162(1):61-68. https://doi.org/10.1111/j.1574-6968.1998.tb12979.x
Seitzinger S, Harrison JA, Böhlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C, Drecht GV. 2006. Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl. 16(6):2064-2090. https://doi.org/10.1890/1051-0761(2006)0162.0.CO;2
Sousa T, Bhosle S. 2012. Microbial denitrification and its ecological implications in the marine system. In: Satyanarayana T, Johri B (eds.), Microorganisms in Environmental Management. Dordrecht: Springer. p. 683-700. https://doi.org/10.1007/978-94-007-2229-3_30
Stewart CN, Via LE. 1993. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques. 14(5):748-751.
Stewart EJ. 2012. Growing unculturable bacteria. J Bacteriol. 194(16):4151-4160. https://doi.org/10.1128/jb.00345-12
Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 38(7):3022-3027. https://doi.org/10.1093/molbev/msab120
Throbäck IN, Enwall K, Jarvis Å, Hallin S. 2004. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol. 49(3):401-417. https://doi.org/10.1016/j.femsec.2004.04.011
Wang L, Zheng B, Nan B, Hu P. 2014. Diversity of bacterial community and detection of nirS– and nirK–encoding denitrifying bacteria in sandy intertidal sediments along Laizhou Bay of Bohai Sea, China. Mar Pollut Bull. 88(1-2):215-223. https://doi.org/10.1016/j.marpolbul.2014.09.002
Ward DH, Morton A, Tibbitts TL, Douglas DC, Carrera-González E. 2003. Long-term change in eelgrass distribution at Bahía San Quintín, Baja California, Mexico, using satellite imagery. Estuaries. 26(6):1529-1539. http://doi.org/10.1007/BF02803661
Wei T, Simko V. 2021. ‘corrplot’: Visualization of a Correlation Matrix. R package v. 0.92. https://github.com/taiyun/corrplot.
Wei W, Isobe K, Nishizawa T, Zhu L, Shiratori Y, Ohte N, Koba K, Otsuka S, Senoo K. 2015. Higher diversity and abundance of denitrifying microorganisms in environments than considered previously. ISME J. 9:1954-1965. http://doi.org/10.1038/ismej.2015.9
Wheatley RE, MacDonald R, Smith AM. 1989. Extraction of nitrogen from soils. Biol Fertil Soils. 8:189-190. https://doi.org/10.1007/BF00257765
Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis. New York (USA): Springer-Verlag New York, Inc. 260 p.
Wittorf L, Jones CM, Bonilla-Rosso G, Hallin S. 2018. Expression of nirK and nirS genes in two strains of Pseudomonas stutzeri harbouring both types of NO-forming nitrite reductases. Res Microbiol. 169(6):343-347. https://doi.org/10.1016/j.resmic.2018.04.010
Yang J, Feng L, Pi S, Cui D, Ma F, Zhao HP, Li A. 2020a. A critical review of aerobic denitrification: insights into the intracellular electron transfer. Sci Total Environ. 731:139080. https://doi.org/10.1016/j.scitotenv.2020.139080
Yang T, Xin Y, Zhang L, Gu Z, Li Y, Ding Z, Shi G. 2020b. Characterization on the aerobic denitrification process of Bacillus strains. Biomass Bioenerg. 140:105677. https://doi.org/10.1016/j.biombioe.2020.105677
Zhang K, Zeng Q, Jiang R, Shi S, Yang J, Long L, Tian X. 2023. Three novel marine species of Paracoccus, P. aerodenitrificans sp. nov., P. sediminicola sp. nov. and P. albus sp. nov., and the characterization of their capability to perform heterotrophic nitrification and aerobic denitrification. Microorganisms. 11(6):1532. https://doi.org/10.3390/microorganisms11061532
Zheng H, Liu Y, Sun G, Gao X, Zhang Q, Liu Z. 2011. Denitrification characteristics of a marine origin psychrophilic aerobic denitrifying bacterium. J Environm Sci. 23(11):1888-1893. https://doi.org/10.1016/S1001-0742(10)60615-8
Zheng Y, Hou L, Liu M, Gao J, Yin G, Li X, Deng F, Lin X, Jiang X, Chen F, et al. 2015. Diversity, abundance, and distribution of nirS-harboring denitrifiers in intertidal sediments of the Yangtze estuary. Microb Ecol. 70:30-40. https://doi.org/10.1007/s00248-015-0567-x
Zhu W, Wang C, Sun F, Zhao L, Dou W, Mao Z, Wu W. 2018. Overall bacterial community composition and abundance of nitrifiers and denitrifiers in a typical macrotidal estuary. Mar Pollut Bull. 126:540-548. https://doi.org/10.1016/j.marpolbul.2017.09.062
Zumft WG. 1997. Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev. 61(4):533-616. https://doi.org/10.1128/mmbr.61.4.533-616.1997.