Heavy metals in Venezuelan marine sediments: concentrations, degree of contamination, and distribution
Main Article Content
Abstract
Venezuelan oil exploration and exploitation activities have been taking place since the 18th century. These long-term activities are closely related to heavy metal contamination because of the increasing input of toxic pollutants. Variations in heavy metal concentrations can cause, among other things, changes in metal distribution patterns, alterations in biogeochemical cycles, and increments in environmental and biological risks. The need for a complete baseline on heavy metal concentrations along the Venezuelan coast is critical. For this reason, we present the concentrations, distribution, and degree of contamination of 9 heavy metals (barium, mercury, copper, nickel, chromium, cadmium, zinc, lead, and vanadium) in marine sediments along the Venezuelan coast. We used the enrichment factor, the geoaccumulation index, and the mean effects range median quotients to evaluate the degree of contamination, comparing areas with and without intervention. Our results indicate that higher concentrations of these heavy metals are associated with places with greater anthropic activity, especially on the central and eastern coasts of Venezuela. Only cadmium showed extremely severe enrichment and a high degree of contamination. The biohazard potential was between 12% and 30% and was primarily associated with locations having high oil activity, which suggests that these places must be monitored, given the potential hazard they represent. This work encompasses the distribution and concentration of 9 heavy metals along the Venezuelan coast and takes relevance as a baseline for heavy metal concentrations and pollution indicators in marine sediments for Venezuela and the Caribbean.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under a Creative Commons Attribution 4.0 License, which allows you to share and adapt the work, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Figures, tables and other elements in the article are included in the article’s CC BY 4.0 license, unless otherwise indicated. The journal title is protected by copyrights and not subject to this license. Full license deed can be viewed here.
Metrics
References
Abrahim GMS, Parker RJ. 2008. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ Monit Assess. 136(1–3):227–238.
https://doi.org/10.1007/s10661-007-9678-2
Birch GF. 2017. Determination of sediment metal background concentrations and enrichment in marine environments–a critical review. Sci Total Environ. 580:813–831.
https://doi.org/10.1016/j.scitotenv.2016.12.028
Birch GF. 2020. An assessment of aluminum and iron in normalisation and enrichment procedures for environmental assessment of marine sediment. Sci Total Environ. 727:138123.
https://doi.org/10.1016/j.scitotenv.2020.138123
Birth GA. 2003. A scheme for assessing human impacts on coastal aquatic environments using sediments. In: Woodcoffe CD, Furness RA (eds.), Coastal Gis. Australia: [University of Wollongong]. Wollongong University Papers in Center for Maritime Policy, No.: 14.
Bone. 2012. Estudio de la actualización de la línea base biológica de los ambientes marinos-costeros y caño Alpargaton de Golfo Triste. Venezuela: Universidad Simón Bolivar, Instituto de Tecnología y Ciencias Marinas. 322 p. Technical report.
Boyd PW, Ellwood MJ, Tagliabue A, Twining BS. 2017. Biotic and abiotic retention, recycling and remineralization of metals in the ocean. Nat Geosci. 10:167–173.
https://doi.org/10.1038/ngeo2876
Braune B, Chételat J, Amyot M, Brown T, Clayden M, Evans M, Fisk A, Gaden A, Girard C, Hare A, et al. 2015. Mercury in the marine environment of the Canadian Arctic: Review of recent findings. Sci Total Environ. 509–510:67–90.
https://doi.org/10.1016/j.scitotenv.2014.05.133
Buchman MF. 2008. NOAA Screening Quick Reference Tables. Seattle (WA): National Oceanic and Atmospheric Administration, Office of Response and Restoration Division. 34 p. NOAA OR&R Report 08-1.
Calvert SE, Pedersen TF. 1993. Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record. Mar Geol. 113(1–2):67–88.
https://doi.org/10.1016/0025-3227(93)90150 –T
[CCME] Canadian Council of Ministers of the Environment. 2001. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. Environment Canada. National Guidelines and Standards Office. Hull (QC, Canada): CCME; accessed 2020 Aug. https://www.elaw.org/system/files/sediment_summary_table.pdf
Carriquiry JD, Horta-Puga G. 2010. The Ba/Ca record of corals from the Southern Gulf of Mexico: Contributions from land-use changes, fluvial discharge and oil-drilling muds. Mar Pollut Bu ll. 60 (9):1625 –1630.
ht t ps://doi.org /10.1016/j.mar polbul.2010.06.007
Celis-Hernandez O, Rosales-Hoz L, Cundy AB, Carranza-Edwards A, Croudace IW, Hernandez-Hernandez H. 2018. Historical trace element accumulation in marine sediments from the Tamaulipas shelf, Gulf of Mexico: An assessment of natural vs anthropogenic inputs. Sci Total Environ. 622–623:325–336.
https://doi.org/10.1016/j.scitotenv.2017.11.228
Cervigón F. 1995. Las Dependencias Federales. Serie Historias Regionales. Caracas (Venezuela): Biblioteca de la Academia Nacional de la Historia. 170 p.
Cheung BMY, Cheung TT. 2017. No lead is better than a little lead. Postgrad Med J. 93(1103):512.
https://doi.org/10.1136/postgradmedj-2017-134916
Cook DE, Gale SJ. 2005. The curious case of the date of introduction of leaded fuel to Australia: Implications for the history of Southern Hemisphere atmospheric lead pollution. Atmos Environ. 39(14):2553–2557.
https://doi.org/10.1016/j.at mosenv.2005.01.009
Franco MA, Viñas L, Soriano JA, de Armas D, González JJ, Beiras R, Salas N, Bayona JM, Albaigés J. 2006. Spatial distribution and ecotoxicity of petroleum hydrocarbons in sediments from the Galicia continental shelf (NW Spain) after the Prestige oil spill. Mar Pollut Bull. 53(5–7):260–271.
https://doi.org/10.1016/j.mar polbul.2005.10.004
Freije AM. 2015. Heavy metal, trace element and petroleum hydrocarbon pollution in the Arabian Gulf: Review. Journal of the Association of Arab Universities for Basic and Applied Sciences. 17(1):90–100.
https://doi.org/10.1016/j.jaubas.2014.02.001
Fuentes MVH, Rojas de Astudillo L, Díaz A, Martínez G. 2010. Distribución de metales pesados en los sedimentos superficiales del Saco del Golfo de Cariaco, Sucre, Venezuela. Rev Biol Trop. 58(suppl 3):129–140.
García E. 2011. Monitoreo ambiental pozo exploratorio Tuna 1X. Venezuela: Universidad Simon Bolivar, Instituto de Tecnología y Ciencias Marinas. 162 p. Technical report. Jointly published by Chevron.
García E. 2014. Monitoreo Ambiental Post-exploración, Bloque Cardón IV, Perla 5. Technical report. Venezuela: Universidad Simon Bolivar, Instituto de Tecnología y Ciencias Marinas. 343 p. Jointly published by Repsol.
García EM, Bastidas C, Cruz-Motta JJ, Farina O. 2011. Metals in waters and sediments of the Morrocoy National Park, Venezuela: increased contamination levels of cadmium over time. Water Air Soil Poll. 214:609–621.
https://doi.org/10.1007/s11270-010-0450-9
García-Miragaya J, Sosa AM. 1994. Trace metals in Valencia lake (Venezuela) sediments. Water Air Soil Poll. 77(1–2):141–150.
González de Juana C, Muñoz JNG. 1968. Rocas ultramáficas en la Península de Paria, Venezuela = Ultramafic rocks on the Paria Peninsula, Venezuela. Asociación Venezolana de Minería y Petróleo. Boletín Informativo. 11(2).
[GESAMP] IMO/FAO/UNESCO-IOC/WMO/IAEA/UN/UNEP/UNIDO Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection. 2007. Report of the Thirty-fourth Session. Paris (France): GESAMP. 83 p. Report No.: 77.
Harding G, Dalziel J, Vass P. 2018. Bioaccumulation of methylmercury within the marine food web of the outer Bay of Fundy, Gulf of Maine. PLOS ONE. 13(7):e0197220.
https://doi.org/10.1371/journal.pone.0197220
Jaffé R, Leal I, Alvarado J, Gardinali PR, Sericano JL. 1998. Baseline study on the levels of organic pollutants and heavy metals in bivalves from the Morrocoy National Park, Venezuela. Mar Pollut Bull. 36(11):925–929.
https://doi.org/10.1016/s0025-326x(98)00090-3
Lieuwen E. 1955. Petróleo en Venezuela: Una historia. Caracas (Venezuela): Cruz del Sur Ediciones. 246 p.
Long ER, Field LJ, MacDonald DD. 1998. Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environ Toxicol Chem. 17(4):714–727.
https://doi.org/10.1002/etc.5620170428
Loring DH, Rantala RTT. 1992. Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Sci Rev. 32(4):235–283.
https://doi.org/10.1016/0012-8252(92)90001-A
Maanan M, Ruiz-Fernández AC, Maanan M, Fattal P, Zourarah B, Sahabi M. 2014. A long-term record of land use change impacts on sediments in Oualidia lagoon, Morocco. Int J Sediment Res. 29(1):1–10.
https://doi.org/10.1016/S1001-6279(14)60017-2
Mahu E, Nyarko E, Hulme S, Coale KH. 2015. Distribution and enrichment of trace metals in marine sediments from the Eastern Equatorial Atlantic, off the Coast of Ghana in the Gulf of Guinea. Mar Pollut Bull. 98(1–2):301–307.
https://doi.org /10.1016/j.mar polbul.2015.06.044
Márquez A, García O, Senior W, Martínez G, González Á, Fermín I. 2012. Metales pesados en sedimentos superficiales del río Orinoco, Venezuela. Bol Inst Oceanogr Venezuela. 51(1):3–18.
Márquez N, Ysambertt F, de la Cruz C. 1999. Three analytical methods to isolate and characterize vanadium and nickel porphyrins from heavy crude oil. Anal Chim Acta. 395(3):343–349.
https://doi.org/10.1016/S0003-2670(99)00304-9
Miloslavich P, Klein E. 2008. Ecorregiones marinas del caribe venezolano. In: Klein E (ed.), Prioridades de PDVSA en la Conservación de la Biodiversidad en el Caribe Venezolano. Caracas (Venezuela): Petróleos de Venezuela, Universidad Simón Bolívar, The Nature Conservancy. p. 16–19.
Mohammed A, May T, Echols K, Walther M, Manoo A, Maraj D, Agard J, Orazio C. 2012. Metals in sediments and fish from Sea Lots and Point Lisas Harbors, Trinidad and Tobago. Mar Pollut Bull. 64(1):169–173.
https://doi.org /10.1016/j.mar polbul.2011.10.036
Monaco D, Chianese E, Riccio A, Delgado-Sanchez A, Lacorte S. 2017. Spatial distribution of heavy hydrocarbons, PAHs and metals in polluted areas. The case of “Galicia”, Spain. Mar Pollut Bull. 121(1–2):230–237.
https://doi.org/10.1016/j.mar polbul.2017.06.003
Müller G. 1969. Index of geoaccumulation in the sediments of the Rhine River. Geojournal. 2:108–118.
Muñoz-Barbosa A, Gutiérrez-Galindo EA, Daesslé LW, Orozco-Borbón MV, Segovia-Zavala JA. 2012. Relationship between metal enrichments and a biological adverse effects index in sediments from Todos Santos Bay, northwest coast of Baja California, México. Mar Pollut Bull. 64(2):405–409.
https://doi.org/10.1016/j.mar polbul.2011.11.023
Neff JM. 2005. Composition, environmental fates and biological effects of water based drilling muds and cuttings discharged to the marine environment: A synthesis and annotated bibliography. Duxbury (MA): Petroleum Environmental Research Forum (PERF), American Petroleum Institute. 73 p.
Norville W. 2005. Spatial distribution of heavy metals in sediments from the Gulf of Paria, Trinidad. Rev Biol Trop. 53(Suppl 1):33–40.
Olsgard F, Gray JS. 1995. A comprehensive analysis of the effects of offshore oil and gas exploration and production on the benthic communities of the Norwegian continental shelf. Mar Ecol Prog Ser. 122:277–306.
https://doi.org/10.3354/meps122277
Pérez-Fernández B, Viñas L, Besada V. 2019. A new perspective on marine assessment of metals and organic pollutants: A case study from Bay of Santander. Sci Total Environ. 691:156–164.
https://doi.org/10.1016/j.scitotenv.2019.07.049
Ramírez PJ. 2001. Corales de Venezuela. Nueva Esparta (Venezuela): Coordinación Estado Nueva Esparta. 219 p.
Ramos R, Cipriani R, Guzman HM, García E. 2009. Chronology of mercury enrichment factors in reef corals from western Venezuela. Mar Pollut Bull. 58(2):222–229.
https://doi.org/10.1016/j.marpolbul.2008.09.023
Reimann C, de Caritat P. 2005. Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors. Sci Total Environ. 337(1–3):91–107.
https://doi.org/10.1016/j.scitotenv.2004.06.011
Sinex SA, Helz GR. 1981. Regional geochemistry of trace elements in Chesapeake Bay sediments. Environ Geol. 3(6):315–323.
https://doi.org/10.1007/BF02473521
Toledo J, Lemus M, Chung KS. 2000. Cooper, cadmium and lead in the fish Cyprinodon dearborni, in the sediments and in the water of two lagoons in Venezuela. Rev Biol Trop. 48(Suppl 1):225–231.
Turekian KK, Wedepohl KH. 1961. Distribution of the elements in some major units of the Earth’s crust. Geol Soc Am Bull. 72(2):175–192.
https://doi.org/10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2
Valdés J, Vargas G, Sifeddine A, Ortlieb L, Guiñez M. 2005. Distribution and enrichment evaluation of heavy metals in Mejillones Bay (23ºS), Northern Chile: Geochemical and statistical approach. Mar Pollut Bull. 50(12):1558–1568.
https://doi.org/10.1016/j.marpolbul.2005.06.024
Wright DA, Welbourn P. 2002. Environmental Toxicology. New York (NY): Cambridge University Press. (Cambridge Environmental Chemistry Series; vol. 11). 630 p.
https://doi.org/10.1017/CBO9780511805998
Yuan G-L, Sun T-H, Han P, Li J, Lang XX. 2014. Source identification and ecological risk assessment of heavy metals in topsoil using environmental geochemical mapping: Typical urban renewal area in Beijing, China. J Geochem Explor. 136:40 – 47.