Effect of environmental light conditions on the growth of the coral Orbicella faveolata in the Mexican Caribbean
Main Article Content
Abstract
Massive corals of the genus Orbicella are key organisms that help maintain the physical structure of Caribbean reefs. However, they are currently threatened by environmental changes, such as increased nutrient loads and pollution, which affect the optical properties of seawater and, consequently, limit reef development. Thus, analyzing the responses in the growth of coral species to changes in light environments can help us improve mitigation and conservation strategies for coral reefs. The objective of this study was to evaluate the effect of changes in environmental light conditions on the growth rate of Orbicella faveolata by comparing fragments transplanted from 9 m to 3 m depth and control fragments that were transplanted under the same light conditions (3 m). The fragments of both treatments showed similar growth (16–23%), as well as comparable extension and diameter values. The annual growth rate for the control fragments and transplantation treatment fragments was 1.04 ± 0.18 cm·y–1 and 1.11 ± 0.23 cm·y–1, respectively. The results of this study reveal that the coral O. faveolata can physiologically acclimate to new environmental light conditions after being transplanted from a deep environment to a shallow environment in the short-term (1–9 months). This suggests great potential for the use of O. faveolata in restoration strategies and management programs that aim to maintain the populations and structural framework of coral reefs in the Caribbean region.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under a Creative Commons Attribution 4.0 License, which allows you to share and adapt the work, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Figures, tables and other elements in the article are included in the article’s CC BY 4.0 license, unless otherwise indicated. The journal title is protected by copyrights and not subject to this license. Full license deed can be viewed here.
Metrics
References
Allemand D, Tambutte E, Zoccola D, Tambutte S. 2011. Coral calcification, cells to reefs. In: Dubinsky Z, Stambler N (eds.), Coral reefs: an ecosystem in transition. New York (USA): Springer. p. 119-150.
Alvarez-Filip L, Estrada-Saldívar N, Pérez-Cervantes E, Molina-Hernández A, González-Barrios FJ. 2019. A rapid spread of the stony coral tissue loss disease outbreak in the Mexican Caribbean. PeerJ Preprints. 7:e27893v1. https://doi.org/10.7287/peerj.preprints.27893v1
Alvarez-Filip L, González-Barrios FJ, Pérez-Cervantes E, Molina-Hernández AM, Estrada-Saldívar N. 2022. Stony coral tissue loss disease decimated Caribbean coral populations and reshaped reef functionality. Commun Biol. 5:440. https://doi.org/10.1038/s42003-022-03398-6
Bosscher H. 1993. Computarized tomography and skeletal density of coral skeletons. Coral Reefs. 12:97-103. https://doi.org/10.1007/BF00302109
Caballero-Aragón H, Perera-Valderrama S, Cerdeira-Estrada S, Martell-Dubois R, Rosique-de la Cruz L, Álvarez-Filip L, Pérez-Cervantes E, Estrada-Saldívar N, Ressl R. 2020. Puerto Morelos coral reefs, their current state and classification by a scoring system. Diversity. 12(7):272. https://doi.org/10.3390/d12070272
Calderón-Aguilera LE, Reyes-Bonilla H, Norzagaray-López CO, López-Pérez RA. 2017. Los arrecifes coralinos de México: Servicios ambientales y secuestro de carbono. Elem Polít Públ. 1:53-62.
Carricart-Ganivet JP, Lough JM, Barnes DJ. 2007. Growth and luminescence characteristics in skeletons of massive Porites from a depth gradient in the central Great Barrier Reef. J Exp Mar Biol Ecol. 351(1–2):27-36. https://doi.org/10.1016/j.jembe.2007.05.038
Chave KE, Smith SV, Roy KJ. 1972. Carbonate production by coral reefs. Mar Geol. 12(2):123-140. https://doi.org/10.1016/0025-3227(72)90024-2
Colombo-Pallotta MF, Rodríguez-Román A, Iglesias-Prieto R. 2010. Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol. Coral Reefs. 29:899-907. https://doi.org/10.1007/s00338-010-0638-x
[CONANP] Comisión Nacional de Áreas Naturales Protegidas. 2000. Programa de Manejo del Parque Nacional Arrecife de Puerto Morelos. Puerto Morelos (Mexico): CONANP. Management program. 225 p.
Dustan P. 1975. Growth and form in the reef-building coral Montastrea annularis. Mar Biol. 33:101-107. http://dx.doi.org/10.1007/BF00390714
Enríquez S, Méndez ER, Iglesias-Prieto R. 2005. Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr. 50(4):1025-1032. https://doi.org/10.4319/lo.2005.50.4.1025
Enríquez S, Méndez ER, Hoegh-Guldberg O, Iglesias-Prieto R. 2017. Key functional role of the optical properties of coral skeletons in coral ecology and evolution. Proc R Soc B. 284:1-9. https://doi.org/10.1098/rspb.2016.1667
Fitt WK, McFarland FK, Warner ME, Chilcoat GC. 2000. Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol Oceanogr. 45(3):677-685. https://doi.org/10.4319/lo.2000.45.3.0677
Foster AB. 1979. Phenotypic plasticity in the reef corals Montastraea annularis (Ellis & Solander) and Siderastrea siderea (Ellis & Solander). J Exp Mar Biol Ecol. 39(1):25-54. https://doi.org/10.1016/0022-0981(79)90003-0
Forsman ZH, Page CA, Toonen RJ, Vaughan D. 2015. Growing coral larger and faster: micro-colony-fusion as a strategy for accelerating coral cover. PeerJ. 16:e1313. https://doi.org/10.7717/peerj.1313
Graus RR, Macintyre IG. 1976. Light control of growth form in colonial reef corals: a computer simulation. Science. 193(4256):895-897. https://doi.org/10.1126/science.193.4256.895
Graus RR, Macintyre IG. 1982. Variation in forms of the Reef Coral Montastraea annularis (Ellis and Solander): A quantitative evaluation of growth response to light distribution using computer simulation. In. Klaus R, Macintyre IG (eds.), The Atlantic Barrier Ecosystem at Carrie Bow Cay, Belize I. Structure and Communities. Washington (USA): Smithsonian Institution Press. p. 441-464.
Gutiérrez-Estrada G. 2017. Relación entre las características de crecimiento y los disepimentos en Orbicella faveolata creciendo en un gradiente lumínico [dissertation]. [Mexico]: Universidad Nacional Autónoma de México. 39 p.
Houlbrèque F, Ferrier‐Pagès C. 2009. Heterotrophy in tropical scleractinian corals. Biol Rev. 84(1):1-17
Kaniewska P, Magnusson SH, Anthony KRN, Reef R, Kühl M, Hoegh-Guldberg O. 2011. Importance of macro-versus microstructure in modulating light levels inside coral colonies. J Phycol. 47(4):846-860. https://doi.org/10.1111/j.1529-8817.2011.01021.x
Kramer N, Guan J, Chen S, Wangpraseurt D, Loya Y. 2021. Characterization of morpho-functional traits in mesophotic corals reveals optimized light capture and photosynthesis. bioRxiv. 2021(09). https://doi.org/10.1101/2021.09.29.462347
Hubbard DK, Scaturo D. 1985. Growth rates of seven species of scleractinean corals from Cane Bay and Salt River, St. Croix, USVI. Bull Mar Sci. 36:325-338.
Klaus J, Budd AF, Heikoop JM, Fouke BW. 2007. Environmental controls on corallite morphology in the reef coral Montastraea annularis. Bull Mar Sci. 80:233-260.
Kleypas JA, Buddemeirer RW, Archer D, Gattuso JP, Langdon C, Opdyke BN. 1999. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science. 284(5411):118-120. https://doi.org/10.1126/science.284.5411.118
Lough JM, Barnes DJ, Devereux MJ, Tobin BJ, Tobin S. 1999. Variability in growth characteristics of massive Porites on the Great Barrier Reef. CRC Reef Res Cen Tech Rep. 28:95.
Manzello DP, Enochs IC, Kolodziej G, Carlton R. 2015. Recent decade of growth and calcification of Orbicella faveolata in the Florida Keys: an inshore-offshore comparison. Mar Ecol Prog Ser. 521:81-89. https://doi.org/10.3354/meps11085
Mallon J, Cyronak T, Hall ER, Banaszak AT, Exton DA, Bass AM. 2022. Light-driven dynamics between calcification and production in functionally diverse coral reef calcifiers. Limnol Oceanogr. 67(2):434-449. https://doi.org/10.1002/lno.12002
Merks MH, Hoekstra AG, Kaandorp JA, Sloot PMA. 2004. Polyp oriented modelling of coral growth. J Theor Biol. 228(4):559-576. https://doi.org/10.1016/j.jtbi.2004.02.020
Molina-Ramos SI. 2020. Estado de conservación y cambios en el arrecife del Parque Nacional Arrecife de Puerto Morelos ante las amenazas antropogénicas [dissertation]. [Mexico]: Universidad Iberoamericana Puebla. 55 p.
Nybakken JW. 2001. Marine Biology: an ecological approach. 5th ed. San Francisco (USA): Benjamin Cummings. 516 p.
Ow YX, Todd PA. 2010. Light-induced morphological plasticity in the scleractinian coral Goniastrea pectinata and its functional significance. Coral Reefs. 29:797-808. https://doi.org/10.1007/s00338-010-0631-4
Page CA. 2013. Reskinning a reef: Mote marine lab scientists explore a new approach to reef restoration. Reef Mar Aqua Mag. 72-8. https://doi.org/10.13140/RG.2.1.4281.0967
Perry CT, Alvarez-Filip L. 2018. Changing geo-ecological functions of coral reefs in the Anthropocene. Funct Ecol. 33(6):976-988. https://doi.org/10.1111/1365-2435.13247
Prada C, López-Londoño T, Pollock FJ, Roitman S, Ritchie KB, Levitan DR, Knowlton N, Woodley C, Iglesias-Prieto R, Medina M. 2022. Linking photoacclimation responses and microbiome shifts between depth-segregated sibling species of reef corals. R Soc Open Sci .9:14. https://doi.org/10.1098/rsos.211591
Rico-Esenaro SD, Tortolero-Langarica JJA, Iglesias-Prieto R, Carricart-Ganivet JP. 2023. The δ15N in Orbicella faveolata organic matter reveals anthropogenic impact by sewage inputs in a Mexican Caribbean coral reef lagoon. Environ Sci Pollut Res. 30:118872-118880. https://doi.org/10.1007/s11356-023-30476-x
Rodríguez-Martínez RE, Ruíz-Rentería F, Tussenbroek B, Barba-Santos G, Escalante-Mancera E, Jordán-Garza G, Jordán-Dahlgren E. 2010. Environmental state and tendencies of the Puerto Morelos CARICOMP site, México. Rev Biol Trop. 58(supp 3):23-43.
Rodríguez-Troncoso AP, Tortolero-Langarica JJA. 2014. Corales: organismos base constructores de los ecosistemas arrecifales. In: Cifuentes-Lemus JL, Cupul-Magaña FG (eds.), Temas sobre Investigaciones Costeras. Guadalajara (Mexico): Universidad de Guadalajara. p. 33-55.
Ruíz-Rentería F, Tussenbroek B, Jordán-Dahlgren E. 1998. Puerto Morelos, Quintana Roo, México. In: Björn Kjerfve (ed.), Caribbean Coral Reef, Seagrass and Mangrove Sites. Puerto Morelos (Mexico): UNESCO. p. 57-66.
[SAMMO] Sistema Académico de Monitoreo Meteorológico y Oceanográfico. 2002. Datos Actuales Estación Puerto Morelos, Quintana Roo, México. Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México; [15 marzo 2022]. https://sammo.icmyl.unam.mx.
Scheufen T, Iglesias-Prieto R, Enríquez S. 2017. Changes in the number of symbionts and Symbiodinium cell pigmentation modulate differentially coral light absorption and photosynthetic performance. Front Mar Sci. 4:1-16. https://doi.org/10.3389/fmars.2017.00309
Schneider C, Rasband W, Eliceiri K. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 9:671-675. https://doi.org/10.1038/nmeth.2089
Sheppard CRC, Davy SK, Pilling GM. 2009. The Biology of Coral Reefs. New York (USA): OXFORD University Press. 339 p.
Smith LW, Barshis D, Birkeland C. 2007. Phenotypic plasticity for skeletal growth, density and calcification of Porites lobata in response to habitat type. Coral Reefs. 26:559-667. https://doi.org/10.1007/s00338-007-0216-z
Teece MA, Estes B, Gelsleichter E, Lirman D. 2011. Heterotrophic y autotrophic assimilation of fatty acids by two scleractinian corals, Montastraea faveolata and Porites astreoides. Limnol Oceanogr. 56(4):1285-1296. https://doi.org/10.4319/lo.2011.56.4.1285
Todd PA, Ladle RJ, Lewin-Koh NIJ, Chou LM. 2004. Genotype x environment interactions in transplanted clones of the massive corals Favia speciosa and Diploastrea heliopora. Mar Ecol Prog Ser. 271:167-182.
Todd PA. 2008. Morphological plasticity in scleractinian corals. Biolo Rev. 83(3):315-337. https://doi.org/10.1111/j.1469-185X.2008.00045.x
Veron JEN. 2010. A Reef in Time. Australia: Harvard University Press. 304 p.
Willis BL. 1987. Phenotypic plasticity versus phenotypic stability in the reef corals Turbinaria mesenterina and Pavona cactus. In: Morphological Variation in the reef corals Turbinaria esenterina and Pavona cactus: synthesis of transplant, histocompatibility, electrophoresis, growth, and reproduction studies [dissertation]. [Australia]: University of North Queensland. 53-87 p.
Yranzo A, Villamizar E, Herrera-Reveles AT, Pérez J, Boadas H, Pereira C, Rodríguez JG, Narciso S, Bustillos F, Cavada-Blanco F. 2020. Coral pilar estrella y coral estrella montañoso Orbicella annularis y Orbicella faveolota Venezuela. Venezuela: Instituto de Zoología y Ecología Tropical, EDGE of Existence, Zoological Society of London. Technical report. 38 p. https://doi.org/10.13140/RG.2.2.35996.31361/1