Dynamics of changes in land use and estimation of CO2 in mangroves in the Marismas Nacionales area, Mexico

Main Article Content

Alejandra Quintero-Morales
https://orcid.org/0000-0002-1435-4921
Wenseslao Plata-Rocha
https://orcid.org/0000-0002-9469-7886
Vicente Olimón-Andalon
https://orcid.org/0000-0001-9995-5680
Sergio Monjardín-Armenta
https://orcid.org/0000-0002-4890-6798
Xanath Nemiga-Antonio
https://orcid.org/0000-0002-8827-6575

Abstract

In recent years, 20% of mangroves have been lost to deforestation worldwide. Mexico is one of the countries with the greatest loss in mangrove surface area, contributing to CO2 emissions and promoting climate change. However, knowledge about the factors that influence the loss and gain in mangroves, CO2 emissions, and the dynamics of land use and vegetation cover at local and regional scales is lacking. Therefore, the objectives of this study were to analyze land use dynamics in the Marismas Nacionales area (Mexico) from 1981 to 2015, to determine the rate of mangrove deforestation and annual degradation, and to estimate the CO2 emissions derived from these processes using geographic information system techniques. To determine land use changes, we used the cross-tabulation matrix and obtained various change parameters that allowed generating an equation to estimate the rates of deforestation and degradation. We used data from the National Inventory of Emissions of Greenhouse Gases and Compounds (Mexico) to estimate CO2 emissions and absorptions (equivalent, CO2e) prompted by mangrove deforestation, degradation, reforestation, and natural recovery. For the 1981–2005 period, the emissions estimate was 432.50 Gg of CO2e due to the annual mangrove deforestation rate of 0.77%, and degradation was 27.16 Gg of CO2e, with an annual rate of 7.64%. For the 2005–2015 period, the emissions estimate was 145.21 Gg of CO2e due to an annual deforestation rate of 0.44%, and degradation was 24.80 Gg of CO2e, with an annual rate of 4.94%. The greatest mangrove loss was due to transformation into land in the agricultural-livestock and anthropic development categories. Degradation was due to natural phenomena and anthropogenic activities.

Downloads

Download data is not yet available.

Article Details

How to Cite
Quintero-Morales, A., Plata-Rocha, W., Olimón-Andalon, V., Monjardín-Armenta, S., & Nemiga-Antonio, X. (2021). Dynamics of changes in land use and estimation of CO2 in mangroves in the Marismas Nacionales area, Mexico. Ciencias Marinas, 47(2), 105–125. https://doi.org/10.7773/cm.v47i2.3162
Section
Research Article

Metrics

References

Aburto-Oropeza O, Ezcurra E, Danemann G, Valdez V, Murray J, Sala E. 2008. Mangroves in the Gulf of California increase fishery yields. P Natl Acad Sci USA. 105(30):10456–10459.

https://doi.org/10.1073/pnas.0804601105

Adame MF, Brown CJ, Bejarano M, Herrera-Silveira JA, Ezcurra P, Boone-Kauffman J, Birdsey R. 2018. The undervalued contribution of mangrove protection in Mexico to carbon emission targets. Conserv Lett. 11(4):e12445.

https://doi.org/10.1111/conl.12445

Adams JB, Rajkaran A. 2020 Changes in mangroves at their southernmost African distribution limit. Estuar Coast Shelf S. 247:106862.

https://doi.org/10.1016/j.ecss.2020.106862

Akhand A, Mukhopadhyay A, Chanda A, Mukherjee S, Das A, Das S, Hazra S, Mitra D, Choudhury SB, Rao KH. 2017. Potential CO2 emission due to loss of above ground biomass from the Indian Sundarban mangroves during the last four decades. J Indian Soc Remote. 45(1):147–154.

https://doi.org/10.1007/s12524-016-0567-4

Alongi DM. 2018. Impact of global change on nutrient dynamics in Mangrove Forests. Forests. 9(10):596.

https://doi.org/10.3390/f9100596

Alongi DM. 2020. Global significance of mangrove blue carbon in climate change mitigation (Version 1). Sci. 2:57.

https://doi.org/10.3390/sci2030057

Arellano MF, Andrade JL. 2016. Aspiradoras verdes: captura de carbono en bosques tropicales [Green vacuum cleaners: carbon capture in tropical forests]. Biodiversistas. 125:1–7.

Arifanti VB, Boone-Kauffman J, Hadriyanto D, Murdiyarso D, Rita D. 2019. Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. Forest Ecol Manag. 432:17–29.

https://doi.org/10.1016/j.foreco.2018.08.047

Asbridge EF, Bartolo R, Finlayson CM, Lucas RM, Rogers K, Woodroffe CD. 2019. Assessing the distribution and drivers of mangrove dieback in Kakadu National Park, northern Australia. Estuar Coast Shelf S. 228:106353.

https://doi.org/10.1016/j.ecss.2019.106353

Berlanga-Robles CA, Ruiz-Luna A. 2007. Análisis de las tendencias de cambio del bosque de mangle del sistema lagunar Teacapán- Agua Brava, México. Una aproximación con el uso de imágenes de satélite Landsat = Analysis of change trends of the mangrove forest in Teacapan-Agua Brava lagoon system, Mexico. An approximation using Landsat satellite images. Universidad y Ciencia. 23(1):29–46.

Boone-Kauffman J, Bernardino AF, Ferreira TO, Bolton NW, Gomes LEO, Nobrega GN. 2018. Shrimp ponds lead to massive loss of soil carbon and greenhouse gas emissions in northeastern Brazilian mangroves. Ecol Evol. 8(11):5530–5540.

https://doi.org/10.1002/ece3.4079

Boone-Kauffman J, Donato DC. 2012. Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. Working Paper, no. 86. Bogor (Indonesia): Center for International Forestry Research. 50 p.

Bouillon S. 2011. Storage beneath mangroves. Nat Geosci. 4:282–283.

https://doi.org/10.1038/ngeo1130

Bravo-Aguas YM. 2018. Valoración económica de manglares del sur de la reserva (Renacam) próximos a camaronera mediante el método de reposición de daño [dissertation]. [Esmeraldas (Ecuador)]: Pontificia Universidad Católica del Ecuador sede Esmeraldas. 79 p.

Cárdenas-Guzmán G. 2011. Tesoro ecológico en riesgo. Los manglares de Marismas Nacionales. ¿Cómoves? Revista de Divulgación de la Ciencia de la Universidad Nacional Autónoma de México, No. 156; [accessed 2020 Aug 15]. h t t p : / / w w w. comoves.unam.mx/numeros/articulo/156/tesoro-ecologico-en-riesgo-los-manglares-de-marismas-nacionales

Castillo JAA, Apan AA, Maraseni TN, Salmo SG III. 2017. Soil greenhouse gas fluxes in tropical mangrove forests and in land uses on deforested mangrove lands. CATENA. 159:60–69. https://doi.org/10.1016/j.catena.2017.08.005

Cifuentes M, Torres D, Sergio V, Rivera CG, Molina O. 2016. Dynamics of blue carbon stocks and GHG emissions along a land use gradient in El Salvador. American Geophysical Union Fall Meeting Abstracts; [accessed 2020 May 4]. https://ui. adsabs.harvard.edu/abs/2016AGUFM.B11G..02C/abstract

[CONABIO] Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. 2009. Manglares de México: Extensión y Distribución [Mangroves of Mexico: Extension and Distribution]. 2nd ed. Mexico City: CONABIO. 99 p.

[CONABIO] Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. 2016. Geoportal del Sistema Nacional de Información sobre Biodiversidad. Mexico City: Portal de Geoinformación Sistema Nacional de Información sobre Biodiversidad (SNIB); [accessed 2019 Nov 15]. http://www.conabio.gob.mx/informacion/gis/

[CONAFOR] Comisión Nacional Forestal. 2012. Inventario Nacional Forestal y de Suelos Informe 2004-2009 [National Forest and Land Inventory Report 2004-2009]. 1st ed. Mexico City: CONAFOR. 282 p.

[CONAFOR] Comisión Nacional Forestal. 2013. Bosques, cambio climático y REDD+ en México, guía básica [Forest, climate change and REDD+ in Mexico, a basic guide]. 2nd ed. Mexico City: CONAFOR. 88 p.

[CONANP] Comisión Nacional de Áreas Naturales Protegidas. 2008. Estudio Previo justificativo para el establecimiento del área natural protegida con la categoría de Reserva de la Biósfera “Marismas Nacionales Sinaloa” [Previous justification study for the establishment of the protected natural area with the category of Biosphere Reserve “Marismas Nacionales Sinaloa”]. Mexico City: CONANP. 61 p.

[CONANP] Comisión Nacional de Áreas Naturales Protegidas, The Nature Conservancy, Conselva, Costas y Cominidades. 2016. Programa de adaptación al cambio climático. Complejo Marismas Nacionales, Nayarit y Sinaloa [Climate change adaptation program. Marismas Nacionales, Nayarit and Sinaloa]. Mexico City: Secretaría de Medio Ambiente y Recusros Naturales. 94 p.

[CONANP-SEMARNAT] Comisión Nacional de Áreas Naturales Protegidas-Secretaria de Medio Ambiente y Recursos Naturales. 2013. Programa de Manejo Reserva de la Biosfera Marismas Nacionales Nayarit [Marismas Nacionales, Nayarit biosphere reserve management program]. 1st ed. Mexico City: Secretaría de Medio Ambiente y Recursos Naturales. 195 p.

De Alban JDT, Jamaludin J, Wong-Wen D, Than MM, Webb EL. 2020. Improved estimates of mangrove cover and change reveal catastrophic deforestation in Myanmar. Environ Res Lett. 15:034034.

https://doi.org/10.1088/1748-9326/ab666d

De la Lanza-Espino G, Sánchez-Santillán N, Sorani V, Bojórquez- Tapia JL. 1996. Características geológicas, hidrológicas y del manglar en la planicie costera de Nayarit, México [Geological, hydrological and mangrove characteristics in the coastal plain of Nayarit, Mexico]. Investigaciones Geográficas Boletín. 1(32):33–54.

https://doi.org/10.14350/rig.59042

[DOF] Diario Oficial de la Federación. 2010 Nov 26. Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental- Especies nativas de México de flora y fauna silvestres- Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. Mexico City: Secretaría de Gobierno.

Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M. 2011. Mangroves among the most carbon-rich forests in the tropics. Nat Geosci. 4:293–297.

https://doi.org/10.1038/ngeo1123

Elwin A, Bukoski JJ, Jintana V, Robinson EJZ, Clark JM. 2019. Preservation and recovery of mangrove ecosystem carbon stocks in abandoned shrimp ponds. Sci Rep UK. 9:18275.

https://doi.org/10.1038/s41598-019-54893-6

Erftemeijer PLA, Hamerlynck O. 2005. Die-back of the mangrove Heritiera littoralis Dryand, in the Rufiji Delta (Tanzania) following El Niño Floods. J Coastal Res. 42:228–235.

Estoque RC, Myint SW, Wang C, Ishtiaque A, Aung TT, Emerton L, Ooba M, Hijioka Y, Mon MS, Wang Z, et al. 2018. Assessing environmental impacts and change in Myanmar’s mangrove ecosystem service value due to deforestation (2000-2014). Glob Change Biol. 24(11):5391–5410.

https://doi.org/10.1111/gcb.14409

[FAO] Food and Agriculture Organization. 1995. Forest resources assessment 1990 Global Synthesis. Rome: FAO Forestry; [accessed 2019 Dic 20]. http://www.fao.org/3/v5695e/v5695e00.htm

[FAO] Food and Agriculture Organization. 1996. Forest resources assessment 1990 Survey of tropical forest cover study of change processes. Rome: FAO Forestry; [accessed 2019 Dic 20]. http://www.fao.org/3/w0015e/w0015e00.htm

[FAO] Food and Agriculture Organization. 2007. The world's mangroves 1980-2005. Rome: FAO Forestry; [accessed 2019 Dic 27]. http://www.fao.org/3/a1427e/a1427e00.pdf

[FAO] Food and Agriculture Organization. 2010. Evaluación de los recursos forestales mundiales 2010: Informe principal. Rome (Italy): FAO Montes; [accessed 2019 Dic 30]. http://www.fao.org/3/i1757s/i1757s.pdf

Harada Y, Fry B, Lee SY, Maher DT, Sippo JZ, Connolly RM. 2019. Stable isotopes indicate ecosystem restructuring following climate-driven mangrove dieback. Limnol Oceanogr. 65(6):1251–1263.

https://doi.org/10.1002/lno.11387

Hirales-Cota M, Espinoza-Avalos J, Schmook B, Ruiz-Luna A, Ramos-Reyes R. 2010. Drivers of mangrove deforestation in Mahahual-Xcalak, Quintana Roo, southeast Mexico = Agentes de deforestación de manglar en Mahahual-Xcalak, Quintana Roo, sureste de México. Cienc Mar. 36(2):147–159.

https://doi.org/10.7773/cm.v36i2.1653

[INE-SEMARNAT] Instituto Nacional de Ecología-Secretaría de Medio Ambiente y Recursos Naturales. 2005. Evaluación preliminar de las tasas de pérdida de superficie de manglar en México [Preliminary assessment of mangrove surface loss rates in Mexico]. México City: INE. 21 p.

[INECC-SEMARNAT] Instituto Nacional de Ecología y Cambio Climático-Secretaría de Medio Ambiente y Recursos Naturales. 2015. First biennial update report to the United Nations framework convention on climate change. 1st ed. Mexico City: INECC-SEMARNAT. 37 p.

[INEGI] Instituto Nacional de Estadística y Geografía. 2015. Encuesta intercensal 2015 [2015 Intercensal Survey]. Mexico City: INEGI [accessed 2019 July 23]. https://www.inegi.org.mx/programas/intercensal/2015/?ps=Microdatos.

[IPCC] Intergovernmental Panel on Climate Change. 2003. Good practice guidance for land use, Land-use change and forestry. Montreal (Canada): Institute for Global Environmental Strategies; IPCC. 590 p.

Lagomasino D, Fatoyinbo L, Castañeda-Moya E, Cook BD, Montesano P, Neigh C, Corp LA, Ott L, Chavez S, Morton DC. 2020. Storm surge, not wind, caused mangrove dieback in southwest Florida following Hurricane Irma. Nat comm.

https://doi.org/10.31223/osf.io/q4exh

López-Angarita J, Tilley A, Hawkins JP, Pedraza C, Roberts CM. 2018. Land use patterns and influences of protected areas on mangroves of the eastern tropical Pacific. Biol Conserv. 227:82–91.

https://doi.org/10.1016/j.biocon.2018.08.020

Lovelock CE. 2008. Soil respiration and belowground carbon allocation in mangrove forests. Ecosystems. 11:342–354.

https://doi.org/10.1007/s10021-008-9125-4

Lovelock CE, Feller IC, Reef R, Hickey S, Ball MC. 2017. Mangrove dieback during fluctuating sea levels. Sci Rep UK. 7:1680.

https://doi.org/10.1038/s41598-017-01927-6

[MARN] Ministerio de Ambiente y Recursos Naturales. 2013. Informe técnico: estudio de la cobertura de mangle en la República de Guatemala [Technical report: study of mangrove coverage in the Republic of Guatemala]. Guatemala: MARN. 54 p.

Merecí-Guamán J, Cifuentes M, Casanoves F, Brenes C, Delgado D. 2017. Caracterización de la dinámica de uso de suelo (1985, 2003 y 2016), determinación de flujos de CO2 históricos y simulación de la cobertura de manglar y camaroneras al 2030 [dissertation]. [Turrialba (Costa Rica)]: Centro Agronómico Tropical de Investigación y Enseñanza CATIE. 65 p.

Nellemann C, Corcoran E, Duarte CM, Valdés L, De Young C, Fonseca L, Grimsditch G. 2009. Blue Carbon. A rapid response assessment. Arendal (Noruega): United Nations Environment Programme, GRID-Arendal.

Nogueira-Servino R, De Oliveira-Gomes LE, Fraga-Bernardino A. 2018. Extreme weather impacts on tropical mangrove forests in the Eastern Brazil Marine Ecoregion. Sci Total Environ. 628–629:233–240.

https://doi.org/10.1016/j.scitotenv.2018.02.068

Osorio JA, Crous CJ, Wingfield MJ, Wilhelm De Beer Z, Roux J. 2017. An assessment of mangrove diseases and pests in South Africa. Forestry: An International Journal of Forest Research. 90(3):343–358.

https://doi.org/10.1093/forestry/cpw063

Peña-Messina. 2009. El Cultivo de camarón y la calidad ambiental: ¿Cómo disminuir sus efectos nocivos en las costas de Nayarit?. México: Revista fuente; [accessed 2020 Feb 3]. http://fuente. uan.edu.mx/numero1.php

Pontius RG Jr., Shusas E, McEachern M. 2004. Detecting important categorical land changes while accounting for persistence. Agr Ecosyst Environ. 101(2–3):251–268.

https://doi.org/10.1016/j.agee.2003.09.008

Puyravaud JP. 2003. Standardizing the calculation of the annual rate of deforestation. Forest Ecol Manag. 177(1–3):593–596.

https://doi.org/10.1016/S0378-1127(02)00335-3

Ramirez-Zavala JR, Cervantes-Escobar A, Ramírez-Zavala JR. 2012. El ambiente biofísico de Marismas Nacionales, Sinaloa, y criterios básicos para la gestión de su integridad ecológica. In: Ramíez-Zavala JR, Cervantes-Escobar A, Tapia-Hernández J (eds.), Marismas Nacionales Sinaloa; futuro y conservación. Baja California, Sinaloa (México): Universidad Autónoma de Sinaloa, Pronatura Noroeste AC. p. 53–115.

Richards DR, Friess DA. 2016. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. P Natl Acad Sci USA. 113(2):344–349.

https://doi.org/10.1073/pnas.1510272113

Rodriguez W, Feller IC, Cavanaugh KC. 2016. Spatio-temporal changes of a mangrove–saltmarsh ecotone in the northeastern coast of Florida, USA. Global Ecology and Conservation. 7:245–261.

https://doi.org/10.1016/j.gecco.2016.07.005

Rodríguez-Zúñiga MT, Troche-Souza C, Vázquez-Lule AD, Márquez-Mendoza JD, Vazquez-Balderas B, Valderrama- Landeros L, Velázquez-Salazar S, Cruz-López MI, Ressl RA, Uribe-Martínez A, et al. 2013. Manglares de México: extensión, distribución y monitoreo. Mexico City: CONABIO. 128 p.

Romero-Berny EI, Santamaría-Damián S, Gomez-ortega R, Velázquez-Velázquez E. 2013. Una aproximación a las tasas de deforestación de los manglares en México [An approximation to the deforestation rates of mangroves in Mexico]. Lacandonia. 7(2):51–58.

Rossi RE, Archer SK, Giri C, Layman CA. 2020. The role of multiple stressors in a dwarf red mangrove (Rhizophora mangle) dieback. Estuar Coast Shelf S. 237:106660.

https://doi.org/10.1016/j.ecss.2020.106660

Rubio-Cisneros N, Aburto-Oropeza A. 2013. Marismas Nacionales su subsistencia en el tiempo [Marismas Nacionales their subsistence in time]. Biodiversitas. 108:1–6.

Sader SA, Joyce AT. 1988. Deforestation Rates and Trends in Costa Rica, 1940 to 1983. Biotropica. 20(1):11–19.

https://doi.org/10.2307/2388421

Sasmito SD, Sillanpää M, Hayes MA, Bachri S, Saragi-Sasmito MF, Sidik F, Hanggara BB, Mofu WY, Rumbiak VI, Hendri, et al. 2020. Mangrove blue carbon stocks and dynamics are controlled by hydrogeomorphic settings and land-use change. Glob Change Biol. 26(5):3028–3039.

https://doi.org/10.1111/gcb.15056

Sippo JZ, Lovelock CE, Santos IR, Sanders CJ, Maher DT. 2018. Mangrove mortality in a changing climate: An overview. Estuar Coast Shelf S. 215:241–249.

https://doi.org/10.1016/j.ecss.2018.10.011

Sippo JZ, Maher DT, Schulz KG, Sanders CJ, McMahon A, Tucker J, Santos IR. 2019. Carbon outwelling across the shelf following a massive mangrove dieback in Australia: Insights from radium isotopes. Geochim Cosmochim Ac. 253:142–158.

https://doi.org/10.1016/j.gca.2019.03.003

Torres-Salamanca MG, Ruíz-Vivas AF. 2017. Identificación del cambio de la cobertura de manglar frente al desarrollo de la industria camaronera en la Costa Caribe colombiana, a partir de la interpretación de imágenes de satélite [dissertation]. [Bogota (Colombia)]: Universidad de la Salle Ciencia Unisalle. 97 p.

Troxler TG, Barr JG, Fuentes JD, Engel V, Anderson G, Sanchez C, Lagomasino D, Price R, Davis SE. 2015. Component-specific dynamics of riverine mangrove CO2 efflux in the Florida coastal Everglades. Agr Forest Meteorol. 213:273–282.

https://doi.org/10.1016/j.agrformet.2014.12.012

Valderrama-Landeros LH, Rodríguez-Zúñiga MT, Troche-Souza C, Velázquez-Salazar S, Villeda-Chávez E, Alcántara-Maya JA, Vázquez-Balderas B, Cruz-López MI, Ressl R. 2017. Manglares de México. Actualización y exploración de los datos del sistema de monitoreo 1970/1980-2015. Mexico City: CONABIO. 107 p.

Valdez-Hernández JI, Ruiz-Luna A, Guzmán-Arroyo M, González- Farias F, Acosta-Velázquez J, Vázquez-Lule AD. 2009. Caracterización del sitio de manglar Teacapán-Agua Brava_ Marismas Nacionales, Sinaloa-Nayarit. Sitios de manglar con relevancia biologica y con necesidades de rehabilitación ecológica. Report, PN10. Mexico City: CONABIO. 20 p.

Vera-Andrade. 2018. Evaluación y análisis de los cambios de cobertura vegetal del manglar del refugio de vida silvestre manglares estuario Río Esmeraldas [dissertation]. [Ecuador]: Pontificia Universidad Católica del Ecuador sede Esmeraldas. 51 p.

Yáñez-Arancibia A, Twilley RR, Lara-Domínguez AL. 1998. Los ecosistemas de manglar frente al cambio climático global [Mangrove ecosystems in the face of global climate change]. Madera Bosques. 4(2):3–19.

https://doi.org/10.21829/myb.1998.421356

Zhong L, Qiguo Z. 2001. Organic carbon content and distribution in soils under different land uses in tropical and subtropical China. Plant Soil. 231:175–185.