Factores que determinan la variabilidad del flujo de CO2 oceáno-atmósfera en 5 zonas costeras del golfo de California

Contenido principal del artículo

Pedro Morales-Urbina
https://orcid.org/0000-0003-3414-0469
T Leticia Espinosa-Carreón
https://orcid.org/0000-0002-0003-7757
Saúl Álvarez-Borrego
https://orcid.org/0000-0002-7586-8678
José Martín Hernández-Ayón
https://orcid.org/0000-0001-6869-6225
Luz de Lourdes Aurora Coronado-Álvarez
https://orcid.org/0000-0001-5572-3247
Lorena Flores-Trejo
https://orcid.org/0000-0001-5918-9942
Cecilia Chapa-Balcorta
https://orcid.org/0000-0001-8305-0844

Resumen

El golfo de California (GC) presenta diversos procesos oceanográficos. Tiene comunicación con el océano Pacífico mediante un flujo de salida de agua superficial (0–200 m) con valores relativamente bajos de carbono inorgánico disuelto (CID) y un flujo de entrada de agua (200–600 m) con valores altos de CID. Los datos sobre el sistema de carbono marino en el GC son escasos, y la mayoría proviene de la región de las islas grandes, en el centro del golfo. Se exploraron los posibles agentes forzantes que controlan la variabilidad del flujo de CO2 océano-atmósfera (fCO2) en 5 zonas costeras del GC. Se realizaron 6 cruceros oceanográficos en 5 regiones: frente al norte de Sinaloa en septiembre de 2016 (NAV2016) y marzo de 2017 (NAV2017), en la cuenca de Guaymas (centro del golfo) en septiembre de 2016 (GUA2016), en bahía Concepción (Baja California Sur) en julio de 2017 (BC2017), en Mulegé (Baja California Sur) en julio de 2017 (MUL2017) y frente a Mazatlán (golfo sur) en julio de 2017 (MAZ2017). Se midió la temperatura y la salinidad, se estimó el CID y la alcalinidad total y se calculó la presión parcial de CO2 superficial y el fCO2. Se utilizaron imágenes de satélite para generar compuestos de la anomalía del nivel del mar con flujo geostrófico, la temperatura superficial del mar y la concentración de clorofila en los días de muestreo. La temperatura más baja, el CID más alto y el fCO2 negativo se registraron en NAV2017. NAV2016, GUA2016 y BC2017 registraron las temperaturas más altas, y MUL2017 y MAZ2017, temperaturas intermedias. Los mayores contrastes de fCO2 ocurrieron en GUA2017 (0.56 ± 0.46 mmol C· m–2·d–1) y MAZ2017 (–2.26 ± 1.85 mmol C· m–2·d–1). En general, el fCO2 está determinado por las condiciones oceanográficas de cada zona de estudio.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Morales-Urbina, P., Espinosa-Carreón, T. L., Álvarez-Borrego, S. ., Hernández-Ayón, J. M., Coronado-Álvarez, L. de L. A., Flores-Trejo, L., & Chapa-Balcorta, C. (2022). Factores que determinan la variabilidad del flujo de CO2 oceáno-atmósfera en 5 zonas costeras del golfo de California. Ciencias Marinas, 48(1). https://doi.org/10.7773/cm.y2022.3265
Sección
Artículo de investigación
Biografía del autor/a

T Leticia Espinosa-Carreón, Instituto Politécnico Nacional-Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional

Luz de Lourdes Aurora Coronado-Álvarez, Universidad Autónoma de Baja California

 

Métrica

Citas

Álvarez-Borrego S. 2010. Physical, Chemical and Biological Oceanography of the Gulf of California. In: Brusca R (ed.), The Gulf of California: Biodiversity and Conservation. Arizona- Sonora Desert Museum Studies in Natural History. Tucson (AZ): The University of Arizona Press and ASDM. p. 24–48.

Álvarez-Borrego S, Schwartzlose RA. 1979. Masas de agua del Golfo de California = Water masses of the Gulf of California. Cienc Mar. 6(1):43–63. http://dx.doi.org/10.7773/cm.v6i1.350 DOI: https://doi.org/10.7773/cm.v6i1.350

Beier E. 1997. A numerical investigation of the annual variability in the Gulf of California. J Phys Ocean. 27(5):615–632. https://doi.org/10.1175/1520-0485(1997)027<0615:ANIOTA>2.0.CO;2 DOI: https://doi.org/10.1175/1520-0485(1997)027<0615:ANIOTA>2.0.CO;2

Bray NA. 1988. Water mass formation in the Gulf of California. J Geophys Res. 93(C8):9223–9240. https://doi.org/10.1029/jc093ic08p09223 DOI: https://doi.org/10.1029/JC093iC08p09223

Cai WJ, Xu YY, Feely RA, Wanninkhof R, Jönsson B, Alin SR, Barbero L, Coross JN, Azetsu-Scott K, Fassbender A, et al. 2020. Controls on surface water carbonate chemistry along North American ocean margins. Nature. 11(1):2691. https://doi.org/10.1038/s41467-020-16530-z DOI: https://doi.org/10.1038/s41467-020-16530-z

Castro R, Collins CA, Rago TA, Margolina T, Navarro-Olache LF. 2017. Currents, transport, and thermohaline variability at the entrance to the Gulf of California (19–21 April 2013) = Corrientes, transportes y variabilidad termohalina en la entrada al golfo de California (19–21 de abril de 2013). Cienc Mar. 43(3):173–190. https://doi.org/10.7773/cm.v43i3.2771 DOI: https://doi.org/10.7773/cm.v43i3.2771

Castro R, Mascarenhas AS, Durazo R, Collins CA. 2000. Variación estacional de la temperatura y salinidad en la entrada del golfo de California, México = Seasonal variation of the temperature and salinity at the entrance to the Gulf of California, Mexico. Cienc Mar. 26(4):561–583. http://dx.doi.org/10.7773/cm.v26i4.621 DOI: https://doi.org/10.7773/cm.v26i4.621

Coronado-Álvarez LLA, Álvarez-Borrego S, Lara-Lara JR, Solana- Arellano E, Hernández-Ayón JM, Zirino A. 2017. Temporal variations of water pCO2 and the air–water CO2 flux at a coastal location in the southern California Current System: diurnal to interannual scales = Variaciones temporales de pCO2 del agua y flujos de aire–agua de CO2 en una localidad costera en el sur del Sistema de la Corriente de California: de la escala diurna a la interanual. Cienc Mar. 43(3):137–156. http://dx.doi.org/10.7773/cm.v43i3.2707 DOI: https://doi.org/10.7773/cm.v43i3.2707

Delgadillo-Hinojosa F, Macías-Zamora JV, Segovia-Zavala JA, Torres-Valdés S. 2001. Cadmium enrichment in the Gulf of California. Mar Chem. 75(1–2):109–122. https://doi.org/10.1016/S0304-4203(01)00028-7 DOI: https://doi.org/10.1016/S0304-4203(01)00028-7

Dickson AG, Goyet C. 1994. Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. Version 2. United States of America: Oak Ridge National Laboratory. http://dx.doi.org/10.2172/10107773 DOI: https://doi.org/10.2172/10107773

[ECMWF] European Centre for Medium-Range Weather Forecasts. 2017. Advancing global NWP through international collaboration. England: ECMWF; accessed 2020 Jul 14. https:// www.ecmwf.int /en/about/contact -us/location.

Espinosa-Carreón TL, Gaxiola-Castro G, Beier E, Strub PT, Kurczyn JA. 2012. Effects of mesoscale processes on phytoplankton chlorophyll off Baja California. J Geophys Res. 117(C4):C04005. https://doi.org/10.1029/2011JC007604 DOI: https://doi.org/10.1029/2011JC007604

Flores-Trejo L, Espinosa-Carreón TL, De la Cruz-Ruíz AI, Hernández-Ayón JM, Chapa-Balcorta C. 2019. Dinámica del sistema del carbono en la columna de agua en octubre 2018 en Punta Lobos, Sonora. In: Paz F, Velázquez A, Rojo M (eds.), Estado Actual del Conocimiento del Ciclo De Carbono y sus Interacciones en México: Síntesis 2019. Texcoco (México): [Programa Mexicano del Carbono]. p. 304–310.

Franco AC, Hernández-Ayón JM, Beier E, Garçon V, Maske H, Paulmier A, Färber-Lorda J, Castro R, Sosa-Ávalos R. 2014. Air-sea CO2 fluxes above the stratified oxygen minimum zone in the coastal region off Mexico. J Geophys Res Oceans. 119(5):2923–2937. https://doi.org/10.1002/2013JC009337 DOI: https://doi.org/10.1002/2013JC009337

Gattuso JP, Frankignoulle M, Wollast R. 1998. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu Rev Ecol Syst. 29(1):405–434. https://doi.org/10.1146/annurev.ecolsys.29.1.405 DOI: https://doi.org/10.1146/annurev.ecolsys.29.1.405

Hernández-Ayón JM. 1995. Desarrollo de un sistema automático, sencillo y preciso de medición de CO2 total, alcalinidad y pH [MSc thesis]. [Ensenada (Mexico)]: UABC. 67 p.

Hernández-Ayón JM, Chapa-Balcorta C, Delgadillo-Hinojosa F, Camacho-Ibar VF, Huerta-Diaz MA, Santamaría-del-Angel E, Galindo-Bect S, Segovia-Zavala JA. 2013. Dynamics of dissolved inorganic carbon in the Midriff Islands region of the Gulf of California: Influence of water masses = Dinámica del carbono inorgánico disuelto en la región de las grandes islas del golfo de California: Influencia de las masas de agua. Cienc Mar. 39(2):183–201. http://doi.org/10.7773/cm.v39i2.2243 DOI: https://doi.org/10.7773/cm.v39i2.2243

Ho DT, Law CS, Smith MJ, Schlosser P, Harvey M, Hill P. 2006. Measurements of air‐sea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizations. Geophys Res Lett. 33(16). https://doi.org/10.1029/2006GL026817 DOI: https://doi.org/10.1029/2006GL026817

Jiménez-López D, Sierra A, Ortega T, Garrido S, Hernández- Puyuelo N, Sámchez-Leal R, Forja J. 2019. pCO2 variability in the surface waters of the eastern Gulf of Cádiz (SW Iberian Peninsula). Ocean Sci. 15:1225–1245. https://doi.org/10.5194/os-15-1225-2019. DOI: https://doi.org/10.5194/os-15-1225-2019

Laruelle GG, Lauerwald R, Pfeil B, Regnier P. 2014. Regionalized global Budget of the CO2 exchange at the air-water interface in continental shelf seas. Glob Biogeochem Cycles. 28(11):1199– 1214.https://doi.org/10.1002/2014GB004832 DOI: https://doi.org/10.1002/2014GB004832

Levin LA. 2002. Deep-Ocean life where oxygen is scarce. Am Sci. 90(5):436–444. Lewis E, Wallace D. 1998. Program developed for the CO2 systems calculations. Oak Ridge (TN): Carbon Dioxide Information Analysis Center. Report ORNL/CDIAC-105.

Linacre L, Durazo R, Hernández-Ayón JM, Delgadillo-Hinojosa F, Cervantes-Díaz G, Lara-Lara JR, Camacho-Ibar V, Siqueiros-Valencia A, Bazán-Guzmán C. 2010. Temporal variability of the physicochemical water characteristics at a coastal monitoring observatory: Station ENSENADA. Cont Shelf Res. 30(16):1730–1742. https://doi.org/10.1016/j.csr.2010.07.011 DOI: https://doi.org/10.1016/j.csr.2010.07.011

Liss PS, Merlivat L. 1986. Air-Sea gas exchange rates: Introduction and synthesis. In: Buat-Ménard P (ed.), The Role of Air-Sea Exchange in Geochemical Cycling. Dordrecht (Netherlands): Springer. (NATO ASI Series; vol.185). p. 113–127. https://doi.org/10.1007/978-94-009-4738-2_5 DOI: https://doi.org/10.1007/978-94-009-4738-2_5

Lueker TJ, Dickson AG, Keeling CD. 2000. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar Chem. 70(1–3):105–119. https://doi.org/10.1016/s0304-4203(00)00022-0 DOI: https://doi.org/10.1016/S0304-4203(00)00022-0

Marinone SG. 2003. A three‐dimensional model of the mean and seasonal circulation of the Gulf of California. J Geophys Res. 108(C10):2–17. https://doi.org/10.1029/2002jc001720 DOI: https://doi.org/10.1029/2002JC001720

Morales-Urbina P, Espinosa-Carreón TL, Álvarez-Borrego S, Hernández-Ayón JM, Flores-Trejo L, Coronado-Álvarez LLA. 2017. Flujo de CO2 océano-atmósfera en la zona de surgencias frente al norte de Sinaloa. In: Paz F, Torres R, Velázquez A (eds.), Estado Actual del Conocimiento del Ciclo del Carbono y sus Interacciones en México: Síntesis a 2017. Serie Síntesis Nacionales. Texcoco (Mexico): Programa Mexicano del Carbono, CICESE, UABC. p. 178–183

[NOAA] National Oceanic and Atmospheric Administration. 2017. Trends in Atmospheric Carbon Dioxide. [Broadway (United States): NOAA]; accessed 2020 Jul 14. https://www.esrl.noaa.gov/gmd/ccgg/trends/graph.html.

Paulmier A, Ruiz-Pino D. 2009. Oxygen minimum zones (OMZs) in the modern ocean. Prog Oceanogr. 80(3–4):113–128. https://doi.org/10.1016/j.pocean.2008.08.001 DOI: https://doi.org/10.1016/j.pocean.2008.08.001

Pegau WS, Boss E, Martínez A. 2002. Ocean color observations of eddies during the summer in the Gulf of California. Geophy Res Lett. 29(9):1–6. https://doi.org/10.1029/2001gl014076 DOI: https://doi.org/10.1029/2001GL014076

Peres-Neto PR, Jackson DA, Somers KM. 2003. Giving meaningful interpretation to ordination axes: assessing loading significance in principal component analysis. Ecology. 84(9):2347–2363. https://doi.org/10.1890/00-0634 DOI: https://doi.org/10.1890/00-0634

Peterson MNA. 1966. Calcite: Rates of dissolution in a vertical profile in the central Pacific. Science. 154(3756):1542–1544. https://doi.org/10.1126/science.154.3756.1542 DOI: https://doi.org/10.1126/science.154.3756.1542

Portela E, Beier E, Barton ED, Castro R, Godínez V, Palacios- Hernández E, Fiedler PC, Sánchez-Velasco L, Trasviña A. 2016. Water masses and circulation in the Tropical Pacific off Central Mexico and surrounding Areas. J Phys Oceanogr. 46(10):3069–3081. https://doi.org/10.1175/JPO-D-16-0068.1 DOI: https://doi.org/10.1175/JPO-D-16-0068.1

Pond S, Pickard GL. 2013. Introductory Dynamical Oceanography. 22nd ed. [Oxford]: Bultterworth-Heineman. 329 p. ISBN. 9780750624961.

Roden GI. 1964. Oceanographic aspects of the Gulf of California. In: van Andel TH, Shor GG (eds.), Marine Geology of the Gulf of California. Tulsa (OK): Am Assoc Petr Geol Mem 3. p. 30–58.

Rodríguez-Ibáñez C, Álvarez-Borrego S, Marinone S, Lara- Lara R. 2013. The Gulf of California is a source of carbon dioxide to the atmosphere = El golfo de California es una fuente de bióxido de carbono hacia la atmósfera. Cienc Mar. 39(2):137–150. https://doi.org/10.7773/cm.v39i2.2190 DOI: https://doi.org/10.7773/cm.v39i2.2190

Santamaría-del-Ángel EM, Álvarez-Borrego S, Millán-Nuñez R, Muller-Karger FE. 1999. Sobre el efecto débil de las surgencias de verano en la biomasa fitoplanctónica del Golfo de California = On the weak effect of summer upwelling on the phytoplankton biomass of the Gulf of California. Rev Soc Mex Hist Nat. 49:207–212.

Schlitzer R. 2016. Ocean Data View User’s Guide. [Germany]: [publisher unknown]; accessed 2020 Jul 14. http://odv.awi.de

Soto-Mardones L, Marinone SG, Parés-Sierra A. 1999. Variabilidad espaciotemporal de la temperatura superficial del mar en el golfo de California = Time and spatial variability of sea surface temperature in the Gulf of California. Cienc Mar. 25(1):1–30. https://doi.org/10.7773/cm.v25i1.658 DOI: https://doi.org/10.7773/cm.v25i1.658

Sutton AJ, Sabine CL, Maenner-Jones S, Lawrence-Slavas N, Meinig C, Feely RA, Mathis JT, Musielewicz S, Bott R, McLain PD, et al. 2014. A high-frequency atmospheric and seawater pCO2 data set from 14 open-ocean sites using a moored autonomous system. Earth Sys Sci Data. 6:353–366. https://doi.org/10.5194/essd-6-353-2014 DOI: https://doi.org/10.5194/essd-6-353-2014

Takahashi T, Sutherland SC, Sweeny C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, et al. 2002. Global sea–air CO2 flux bases on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res PT II. 49(9–19):1601–1622. https://doi.org/10.1016/s0967-0645(02)00003-6 DOI: https://doi.org/10.1016/S0967-0645(02)00003-6

Thomas WH. 1966. On denitrification in the northeastern tropical Pacific Ocean. Deep-Sea Res. 13(6):1109–1114. https://doi.org/10.1016/0011-7471(66)90702-9 DOI: https://doi.org/10.1016/0011-7471(66)90702-9

Trucco-Pignata PN, Hernández-Ayón JM, Santamaria-del Angel E, Beier E, Sánchez-Velasco L, Godínez VM, Norzagaray O. 2019. Ventilation of the upper oxygen minimum zone in the coastal region off Mexico: Implications of El Niño 2015–2016. Front Mar Sci. 6:459. https://doi.org/10.3389/fmars.2019.00459 DOI: https://doi.org/10.3389/fmars.2019.00459

Wanninkhof R. 2014. Relationship between wind speed and gas exchange over the ocean revisited. Limnol Ocean Methods. 12(6):351–362. https://doi.org/10.4319/lom.2014.12.351 DOI: https://doi.org/10.4319/lom.2014.12.351

Weiss RF. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem. 2(3):203–215. https://doi.org/10.1016/0304-4203(74)90015-2 DOI: https://doi.org/10.1016/0304-4203(74)90015-2

Artículos más leídos del mismo autor/a

1 2 > >>