Concentraciones de mercurio en bivalvos y cefalópodos enlatados nacionales e importados que se expenden en el noroeste de México

Contenido principal del artículo

Jorge Ruelas-Inzunza
Carolina Delgado-Alvarez
Ofelia Escobar-Sánchez
Martín Frías-Espericueta

Resumen

El mercurio (Hg) se incorpora principalmente en los seres humanos a través del consumo de alimentos contaminados. Se midió el Hg y se estimó el metilmercurio (MeHg) en moluscos enlatados que se venden en el noroeste de México para evaluar el riesgo para la salud de los consumidores. Se consideraron 5 tipos de moluscos: ostiones, almejas, pulpos, mejillones y calamares. La concentración de Hg en los mejillones fue significativamente (P < 0.05) más baja que la de los otros bivalvos (ostras y almejas) y cefalópodos (calamares y pulpos). La concentración promedio de Hg en los bivalvos (0.013 mg·kg–1) fue significativamente (P < 0.05) menor que la de los cefalópodos (0.018 mg·kg–1). Las concentraciones estimadas de MeHg también fueron menores en los bivalvos que en los cefalópodos. De acuerdo con nuestros resultados, no existe riesgo relacionado con el consumo de moluscos enlatados en el noroeste de México. La secuencia de las concentraciones de Hg fue pulpos > calamares = almejas > ostiones > mejillones. Las concentraciones de Hg y MeHg en los moluscos evaluados en este estudio estaban por debajo de los límites máximos permitidos para el consumo humano en México.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Ruelas-Inzunza, J., Delgado-Alvarez, C., Escobar-Sánchez, O., & Frías-Espericueta, M. (2023). Concentraciones de mercurio en bivalvos y cefalópodos enlatados nacionales e importados que se expenden en el noroeste de México. Ciencias Marinas, 49. https://doi.org/10.7773/cm.y2023.3393
Sección
Artículo de investigación

Métrica

Citas

Al-Mughairi S, Yesudhason P, Al-Busaidi M, Al-Waili A, Al-Rahbi WAK, Al-Mazrooei N, Al-Habsi SH. 2013. Concentration and exposure assessment of mercury in commercial fish and other seafood marketed in Oman. J Food Sci. 78(7):82-90. https://doi.org/10.1111/1750-3841.12150 DOI: https://doi.org/10.1111/1750-3841.12150

Annual ZF, Maher W, Krikowa F, Hakim L, Ahmad NI, Foster S. 2018. Mercury and risk assessment from consumption of crustaceans, cephalopods and fish from West Peninsular Malaysia. Microchem J. 140:214-221. https://doi.org/10.1016/j.microc.2018.04.024 DOI: https://doi.org/10.1016/j.microc.2018.04.024

Apeti DA, Lauenstein GG, Evans DW. 2012. Recent status of total mercury and methyl mercury in the coastal waters of the northern Gulf of Mexico using oysters and sediments from NOAA’s mussel watch program. Mar Pollut Bull. 64:2399-2408. https://doi.org/10.1016/j.marpolbul.2012.08.006 DOI: https://doi.org/10.1016/j.marpolbul.2012.08.006

Blanco SL, González JC, Vieites JM. 2008. Mercury, cadmium and lead levels in samples of the main traded fish and shellfish species in Galicia, Spain. Food Addit Contam Part B. 1(1):15-21. https://doi.org/10.1080/19393210802236893 DOI: https://doi.org/10.1080/19393210802236893

Burger J, Gochfeld M. 2004. Mercury in canned tuna: white versus light and temporal variation. Environ Res. 96(3):239-249. https://doi.org/10.1016/j.envres.2003.12.001 DOI: https://doi.org/10.1016/j.envres.2003.12.001

Claisse D, Cossa D, Bretaudeau-Sanjuan J, Touchard G, Bombled B. 2001. Methylmercury in molluscs along the French coast. Mar Pollut Bull. 42(4):329-332. https://doi.org/10.1016/s0025-326x(01)00036-4 DOI: https://doi.org/10.1016/S0025-326X(01)00036-4

Clarkson TW, Magos L. 2006. The toxicology of mercury and its chemical compounds. Crit Rev Toxicol. 36(8):609-662. https://doi.org/10.1080/10408440600845619 DOI: https://doi.org/10.1080/10408440600845619

[CONAPESCA] Comisión Nacional de Pesca y Acuacultura. 2013. Anuario estadístico de acuacultura y pesca 2013. Mexico: CONAPESCA. 298 p.

Costa FN, Korn MGA, Brito GB, Ferlin S, Fostier AH. 2016. Preliminary results of mercury levels in raw and cooked seafood and their public health impact. Food Chem. 192:837-841. https://doi.org/10.1016/j.foodchem.2015.07.081 DOI: https://doi.org/10.1016/j.foodchem.2015.07.081

Costa MF, Landing WM, Kehrig HA, Barletta M, Holmes CD, Barrocas PRG, Evers DC, Buck DG, Vasconcellos AC, Hacon SS, et al. 2012. Mercury in tropical and subtropical coastal environments. Environ Res. 119:88-100. https://doi.org/10.1016/j.envres.2012.07.008 DOI: https://doi.org/10.1016/j.envres.2012.07.008

Davidson PW, Myers GJ, Weiss B. 2004. Mercury exposure and child development outcomes. Pediatrics. 113(3):1023-1029. https://doi.org/10.1542/peds.113.S3.1023 DOI: https://doi.org/10.1542/peds.113.S3.1023

De Gregori I, Delgado D, Pinochet H, Gras N, Muñoz L, Bruhn C, Navarrete G. 1994. Cadmium, lead, copper and mercury levels in fresh and canned bivalve mussels Tagelus dombeii (Navajuela) and Semelle solida (Almeja) from the Chilean coast. Sci Tot Environ. 148(1):1-10. https://doi.org/10.1016/0048-9697(94)90367-0 DOI: https://doi.org/10.1016/0048-9697(94)90367-0

Delgado-Álvarez CG, Ruelas-Inzunza J, Osuna-López JI, Voltolina D, Frías-Espericueta MG. 2015. Total mercury content in cultured oysters from NW Mexico: health risk assessment. Bull Environ Contam Toxicol. 94:209-213. https://doi.org/10.1007/s00128-014-1430-3 DOI: https://doi.org/10.1007/s00128-014-1430-3

[EPA] Environmental Protection Agency. 2001. Water quality criterion for the protection of human health: methylmercury. Washington (DC): EPA. 308 p.

Gutiérrez AJ, González-Weller D, González T, Burgos A, Lozano G, Reguera JI, Hardisson A. 2007. Content of toxic heavy metals (mercury, lead, and cadmium) in canned variegated scallops (Chlamys varia). J Food Prot. 70(12):2911-2915. https://doi.org/10.4315/0362-028X-70.12.2911 DOI: https://doi.org/10.4315/0362-028X-70.12.2911

Gutiérrez AJ, Lozano G, González T, Reguera JI, Hardisson A. 2006. Mercury content in tinned molluscs (mussel, cockle, variegated scallop, and razor shell) normally consumed in Spain. J Food Prot. 69(9):2237-2240. http://doi.org/10.4315/0362-028X-69.9.2237 DOI: https://doi.org/10.4315/0362-028X-69.9.2237

Hight SC, Cheng J. 2006. Determination of methylmercury and estimation of total mercury in seafood using high performance liquid chromatography (HPLC) and inductively coupled plasma-mass spectrometry (ICP-MS): method development and validation. Anal Chim Acta. 567(2):160-172. https://doi.org/10.1016/j.aca.2006.03.048 DOI: https://doi.org/10.1016/j.aca.2006.03.048

Honda S, Hylander L, Sakamoto M. 2006. Recent advances in evaluation of health effects on mercury with special reference to methylmercury— a minireview. Environ Health Prev Med. 11:171-176. https://doi.org/10.1007/bf02905275 DOI: https://doi.org/10.1007/BF02905275

Karimi R, Frisk M, Fisher NS. 2013. Contrasting food web factor and body size relationships with Hg and Se concentrations in marine biota. PLOS ONE. 8(9):1-10. https://doi.org/10.1371/journal.pone.0074695 DOI: https://doi.org/10.1371/journal.pone.0074695

Lekshmanan PT. 1988. Heavy metals in commercially processed molluscan products in relation to quality. CMFRI Bull. 42(2):417-422.

Lourenço HM, Afonso C, Martins MF, Lino AR, Nunes ML. 2004. Levels of toxic metals in canned seafood. J Aquat Food Prod Tech. 13(3):117-125. https://doi.org/10.1300/J030v13n03_11 DOI: https://doi.org/10.1300/J030v13n03_11

Luoma SN, Rainbow PS. 2005. Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ Sci Tech. 39(7):1921-1931. https://doi.org/10.1021/es048947e DOI: https://doi.org/10.1021/es048947e

McCarron P, Kilcoyne J, Hess P. 2008. Effects of cooking and heat treatment on concentration and tissue distribution of okadaic acid and dinophysistoxin-2 in mussels (Mytilus edulis). Toxicon. 51(6):1081-1089. https://doi.org/10.1016/j.toxicon.2008.01.009 DOI: https://doi.org/10.1016/j.toxicon.2008.01.009

Miklavčič A, Stibilj V, Heath E, Polak T, Tratnik JS, Klavž J, Mazej D, Horvat M. 2011. Mercury, selenium, PCBs and fatty acids in fresh and canned fish available on the Slovenian market. Food Chem. 124:711-720. https://doi.org/10.1016/j.foodchem.2010.06.040 DOI: https://doi.org/10.1016/j.foodchem.2010.06.040

Moody JR, Lindstrom RM. 1977. Selection and cleaning of plastic containers for storage of trace element samples. Anal Chem. 49(14):2264-2267. https://doi.org/10.1021/ac50022a039 DOI: https://doi.org/10.1021/ac50022a039

Morgan JN, Berry MR, Graves RL. 1997. Effects of commonly used cooking practices on total mercury concentration in fish and their impact on exposure assessments. J Expo Anal Environ Epidemiol. 7(1):119-133.

Newman MC. 2009. Fundamentals of Ecotoxicology. Boca Raton (FL): CRC Press. 571 p.

[SSA] Secretaría de Salubridad y Asistencia. 1997 DIC 10. NORMA Oficial Mexicana NOM-129-SSA1-1995, Bienes y servicios. Productos de la pesca: secos-salados, ahumados, moluscos cefalópodos y gasterópodos frescos-refrigerados y congelados. Disposiciones y especificaciones sanitarias. Mexico City (Mexico): Diario Oficial de la Federación. 32 p.

[SSA] Secretaría de Salubridad y Asistencia. 1994 MAR 23. Proyecto de Norma Oficial Mexicana NOM-032-SSA1-1993, Bienes y servicios. Productos de la pesca. Moluscos bivalvos en conserva. Especificaciones sanitarias. Mexico City (Mexico): Diario Oficial de la Federación. 5 p.

Olmedo P, Pla A, Hernández AF, Barbier F, Ayouni L, Gil F. 2013. Determination of toxic elements (mercury, cadmium, lead, tin and arsenic) in fish and shellfish samples. Risk assessment for the consumers. Environ Int. 59:63-72. https://doi.org/10.1016/j.envint.2013.05.005 DOI: https://doi.org/10.1016/j.envint.2013.05.005

Oduoza CF. 1992. Studies of food value and contaminants in canned foods. Food Chem. 44(1):9-12. https://doi.org/10.1016/0308-8146(92)90250-6 DOI: https://doi.org/10.1016/0308-8146(92)90250-6

Pan K, Wang W-X. 2011. Mercury accumulation in marine bivalves: Influences of biodynamics and feeding niche. Environ Pollut. 159(10):2500-2506. https://doi.org/10.1016/j.envpol.2011.06.029 DOI: https://doi.org/10.1016/j.envpol.2011.06.029

Pawlaczyk A, Przerywacz A, Gajek M, Szynkowska-Jozwik MI. 2020. Risk of mercury ingestion from canned fish in Poland. Molecules. 25(24):5884. https://doi.org/10.3390/molecules25245884 DOI: https://doi.org/10.3390/molecules25245884

Ruelas-Inzunza J, Páez-Osuna F, Ruiz-Fernández AC, Zamora-Arellano N. 2011a. Health risk associated to dietary intake of mercury in selected coastal areas of Mexico. Bull Environ Contam Toxicol. 86:180-188. https://doi.org/10.1007/s00128-011-0189-z DOI: https://doi.org/10.1007/s00128-011-0189-z

Ruelas-Inzunza J, Patiño-Mejía C, Soto-Jiménez M, Barba-Quintero G, Spanopoulos-Hernández M. 2011b. Total mercury in canned yellowfin tuna Thunnus albacares marketed in northwest Mexico. Food Chem Toxicol. 49(12):3070-3073. https://doi.org/10.1016/j.fct.2011.07.030 DOI: https://doi.org/10.1016/j.fct.2011.07.030

Tahán JE, Sánchez JM, Granadillo VA, Cubillán HS, Romero RA. 1995. Concentration of total Al, Cr, Cu, Fe, Hg, Na, Pb, and Zn in commercial canned seafood determined by atomic spectrometric means after mineralization by microwave heating. J Agric Food Chem. 43(4): 910-915. https://doi.org/10.1021/jf00052a012 DOI: https://doi.org/10.1021/jf00052a012

Taylor VF, Jackson BP, Chen CY. 2008. Mercury speciation and total trace element determination of low-biomass biological samples. Anal Bioanal Chem. 392:1283-1290. https://doi.org/10.1007%2Fs00216-008-2403-3 DOI: https://doi.org/10.1007/s00216-008-2403-3

Torres-Escribano S, Vélez D, Montoro R. 2010. Mercury and methylmercury bioaccessibility in swordfish. Food Addit Contam Part A. 27(3):327-337. https://doi.org/10.1080/19440040903365272 DOI: https://doi.org/10.1080/19440040903365272

[UNEP] United Nations Environment Programme. 2019. Global Mercury Assessment 2018. Geneva (Switzerland): UNEP. 62 p.

Yi W, Jianying H, Lihui A, Wei A, Min Y, Mitsuaki I, Tatsuya H, Shu T. 2005. Determination of trophic relationships within a Bohai Bay food web using stable δ15N and δ13C analysis. Chin Sci Bull. 50(10):1021-1025. https://doi.org/10.1360/04wd0283 DOI: https://doi.org/10.1360/04wd0283

Artículos más leídos del mismo autor/a