Comparing richness and abundance of cryptobenthic reef fishes in coral and rocky microhabitats in Bahía de los Ángeles, Gulf of California

Main Article Content

Luis M Jáquez-Domínguez
https://orcid.org/0000-0002-3966-3624
Rodrigo D Chiriboga-Ortega
https://orcid.org/0000-0003-1970-4289
Lydia B Ladah
Luis E Calderón-Aguilera
https://orcid.org/0000-0001-5427-6043
Omar Valencia-Méndez
https://orcid.org/0000-0002-8623-5446

Abstract

Rocky-coral ecosystems host highly heterogeneous habitats and functionally diverse fish communities. Within these systems, coral microhabitats play a pivotal role by offering a subset of the available resources to cryptofauna, particularly cryptobenthic reef fishes (CRF), which are notable for their abundance and diversity. This group of fishes, with adult lengths of less than 5 cm, shows highly specialized visual and behavioral camouflage, which often leads to their underrepresentation in studies. Due to the scarcity of research and the significant taxonomic complexity of CRF, this study investigated the association between CRF and the massive coral Porites panamensis in Bahía de los Ángeles, Gulf of California, and rocky substrate. We hypothesized that CRF densities would be higher in coral microhabitats because of their superior three-dimensional complexity. Two extractive sampling efforts were conducted in March and October 2022 (n = 16). A total of 238 individuals were collected, representing 14 species from 5 fish families. Five species accounted for 76.62% of the total abundance, with the families Gobiidae, Tripterygiidae, and Chaenopsidae being the most represented. The average density of CRF in P. panamensis microhabitats was twice that observed in rocky microhabitats (W = 46.5, P = 0.036). Moreover, CRF assemblage structure and composition differed significantly between microhabitats (Pseudo-F = 4.41, P = 0.004). These findings highlight the critical role of P. panamensis as a microhabitat and its influence on the benthic organization of CRF. Given the ongoing degradation of coral cover and the decline in structural habitat complexity, these results are essential to understand long-term shifts in cryptofaunal communities.

Downloads

Download data is not yet available.

Article Details

How to Cite
Jáquez-Domínguez, L. M., Chiriboga-Ortega, R. D., Ladah, L. B., Calderón-Aguilera, L. E., & Valencia-Méndez, O. (2025). Comparing richness and abundance of cryptobenthic reef fishes in coral and rocky microhabitats in Bahía de los Ángeles, Gulf of California. Ciencias Marinas, 50(1B). https://doi.org/10.7773/cm.y2025.3495
Section
Research Article

Metrics

References

Aburto-Oropeza O, Balart EF. 2001. Community structure of reef fish in several habitats in the Gulf of California. Mar Ecol. 22:283-305. https://doi.org/10.1046/j.1439-0485.2001.01747.x

Ackerman JL, Bellwood DR. 2000. Reef fish assemblages: a re-evaluation using enclosed rotenone stations. Mar Ecol Prog Ser. 206:227-237. http://dx.doi.org/10.3354/meps206227

Alzate A, Zapata FA, Giraldo A. 2014. A comparison of visual and collection-based methods for assessing community structure of coral reef fishes in the Tropical Eastern Pacific. Rev Biol Trop. 62:359-371. http://dx.doi.org/10.15517/rbt.v62i0.16361

Arias-González JE, Done TJ, Page CA, Cheal A, Kininmonth S, Garza-Pérez JR. 2006. Towards a reefscape ecology: relating biomass and trophic structure of fish assemblages to habitat at Davies Reef, Australia. Mar Ecol Prog Ser. 320:29-41. https://doi.org/10.3354/meps320029

Benfield S, Baxter L, Guzman HM, Mair JM. 2008. A comparison of coral reef and coral community fish assemblages in Pacific Panama and environmental factors governing their structure. J Mar Biol Assoc UK. 88(7):1331-1341. https://doi.org/10.1017/S0025315408002002

Brandl SJ, Casey JM, Meyer CP. 2020. Dietary and habitat niche partitioning in congeneric cryptobenthic reef fish species. Coral Reefs. 39:305-317. https://doi.org/10.1007/s00338-020-01892-z

Brandl SJ, Goatley CH, Bellwood DR, Tornabene L. 2018. The hidden half: ecology and evolution of cryptobenthic fishes on coral reefs. Biol Rev. 93(4):1846-1873. https://doi.org/10.1111/brv.12423

Brooks AJ, Holbrook SJ, Schmitt RJ. 2007. Patterns of microhabitat use by fishes in the patch-forming coral Porites rus. Raffles B Zool. 14:245-254.

Brusca RC. 2010. The Gulf of California: Biodiversity and Conservation. Tucson (USA): University of Arizona Press. 400 p.

Burns JHR, Delparte D, Gates RD, Takabayashi M. 2015. Integrating structure-from-motion photogrammetry with geospatial software as a novel technique for quantifying 3D ecological characteristics of coral reefs. PeerJ. 3:e1077. http://dx.doi.org/10.7717/peerj.1077

Bussing WA. 1990. New species of gobiid fishes of the genera Lythrypnus, Elacatinus and Chriolepis from the eastern tropical Pacific. Rev Biol Trop. 38(1):99-118. https://revistas.ucr.ac.cr/index.php/rbt/article/view/24944

Coker DJ, Wilson SK, Pratchett MS. 2014. Importance of live coral habitat for reef fishes. Rev Fish Biol Fisher. 24:89-126. https://doi.org/10.1007/s11160-013-9319-5

Curtis JS, Galvan JW, Primo A, Osenberg CW, Stier AC. 2023. 3D photogrammetry improves measurement of growth and biodiversity patterns in branching corals. Coral Reefs. 42(3):623-627. https://doi.org/10.1007/s00338-023-02367-7

Depczynski M, Bellwood DR. 2003. The role of cryptobenthic reef fishes in coral reef trophodynamics. Mar Ecol Prog Ser. 256:183-191. http://dx.doi.org/10.3354/meps256183

Depczynski M, Bellwood DR. 2004. Microhabitat utilisation patterns in cryptobenthic coral reef fish communities. Mar Biol. 145(3):455-463. https://doi.org/10.1007/s00227-004-1342-6

Dominici-Arosemena A, Wolff M. 2006. Reef fish community structure in the Tropical Eastern Pacific (Panamá): living on a relatively stable rocky reef environment. Helgol Mar Res. 60:287-305. https://doi.org/10.1007/s10152-006-0045-4

Dubuc A, Quimbayo JP, Alvarado JJ, Araya-Arce T, Arriaga A, Ayala-Bocos A, Casas-Maldonado J, Chasqui L, Cortés J, Cupul-Magaña A, et al. 2023. Patterns of reef fish taxonomic and functional diversity in the Eastern Tropical Pacific. Ecography. 2023:e06536. https://doi.org/10.1111/ecog.06536

Fricke R, Eschmeyer WN, van der Laan R. 2023. Eschmeyer’s catalog of fishes: genera, species, references; [accessed 2023 Mar 03]. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp

Fukunaga A, Burns JH, Craig BK, Kosaki RK. 2019. Integrating three-dimensional benthic habitat characterization techniques into ecological monitoring of coral reefs. J Mar Sci Eng. 7(2):27. https://doi.org/10.3390/jmse7020027

Galland GR. 2013. The conservation and ecology of cryptobenthic fishes on rocky reefs in the Gulf of California, Mexico [dissertation]: University of California, San Diego. 171 p.

Galland GR, Erisman B, Aburto-Oropeza O, Hastings PA. 2017. Contribution of cryptobenthic fishes to estimating community dynamics of sub-tropical reefs. Mar Ecol Prog Ser. 584:175-184. https://doi.org/10.3354/meps12364

Galván-Villa CM, López-Uriarte E, Arreola-Robles JL. 2011. Diversidad, estructura y variación temporal del ensamble de peces asociados al arrecife coralino de playa Mora, bahía de Tenacatita, México. Hidrobiológica. 21(2):135-146.

Ginsburg I. 1938. Eight new species of gobioid fishes from the American Pacific coast. Allan Hancock Pacific Expedition 1932–40. 2(7):109-121. http://doi.org/10.25549/hancock-c82-14202

Glynn PW, Alvarado JJ, Banks S, Cortés J, Feingold JS, Jiménez C, Maragos JE, Martínez P, Maté JL, Moanga DA, et al. 2017. Eastern Pacific Coral Reef Provinces, Coral Community Structure and Composition: An Overview. In: Glynn P, Manzello D, Enochs I (eds.), Coral Reefs of the Eastern Tropical Pacific. Coral Reefs of the World, vol 8. Dordrecht (Netherlands): Springer. p. 107-176. https://doi.org/10.1007/978-94-017-7499-4_5

González‐Cabello A, Bellwood DR. 2009. Local ecological impacts of regional biodiversity on reef fish assemblages. J Biogeogr. 36(6):1129-1137. https://doi.org/10.1111/j.1365-2699.2008.02065.x

González-Murcia S, Alvarado-Larios R, Guerra J, Logan M. 2023. The good and the better, sampling tropical intertidal rock pool fishes: a comparison between visual census vs. rock pool bailing method. Cienc Mar. 49. https://doi.org/10.7773/cm.y2023.3404

Hastings PA, Galland GR. 2010. Ontogeny of microhabitat use and two-step recruitment in a specialist reef fish, the Browncheek Blenny (Chaenopsidae). Coral Reefs. 29:155-164. https://doi.org/10.1007/s00338-009-0565-x

Holbrook SJ, Brooks AJ, Schmitt RJ, Stewart HL. 2008. Effects of sheltering fish on growth of their host corals. Mar Biol. 155:521-530. https://doi.org/10.1007/s00227-008-1051-7

Kohler KE, Gill SM. 2006. Coral Point Count with Excel extensions (CPCe): A Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Comput Geosci-UK. 32:1259-1269. https://doi.org/10.1016/j.cageo.2005.11.009

Komyakova V, Munday PL, Jones GP. 2013. Relative importance of coral cover, habitat complexity, and diversity in determining the structure of reef fish communities. PLOS ONE. 8(12):e83178. https://doi.org/10.1371/journal.pone.0083178

López-Pérez RA, Calderon-Aguilera LE, Zepeta-Vilchis RC, López-Pérez MI, López-Ortiz AM. 2013. Species composition, habitat configuration and seasonal changes of coral reef fish assemblages in western Mexico. J Appl Ichthyol. 29:437-448. https://doi.org/10.1111/jai.12029

López-Pérez A, Granja-Fernández R, Ramírez-Chávez E, Valencia-Méndez O, Rodríguez-Zaragoza FA, González-Mendoza T, Martínez-Castro A. 2024. Widespread coral bleaching and mass mortality of reef-building corals in southern Mexican Pacific reefs due to 2023 El Niño warming. Oceans. 5(2):196-209. https://doi.org/10.3390/oceans5020012

Magurran AE. 2003. Measuring biological diversity. Hoboken, NJ (USA): Wiley-Blackwell. 272 p.

Martínez-Fuentes LM, Norzagaray-López CO, Hernández-Ayón JM, Solana-Arellano ME, Uribe-López AG, Valdivieso-Ojeda JA, Camacho-Ibar V, Mejía-Trejo A, Delgadillo-Hinojosa F, Cabral-Tena RA. 2022. Influence of the advection of water masses in the Ballenas Channel on the CO2 system in Bahía de los Angeles (Mexico). Reg Stud Mar Sci. 55:102505. https://doi.org/10.1016/j.rsma.2022.102505

Morrison ML, Marcot B, Mannan W. 2012. Wildlife-Habitat Relationships: Concepts and Applications. 3rd ed. Washington DC (USA): Island Press. 494 p.

Moynihan JL, Hall AE, Kingsford MJ. 2022. Interrelationships between soft corals and reef-associated fishes on inshore-reefs of the Great Barrier Reef. Mar Ecol Prog Ser. 698:15-28. https://doi.org/10.3354/meps14160

Muruga P, Siqueira AC, Bellwood DR. 2024. Meta-analysis reveals weak associations between reef fishes and corals. Nat Ecol Evol. 8:676-685. https://doi.org/10.1038/s41559-024-02334-7

Nanami A, Nishihira M. 2004. Microhabitat association and temporal stability in reef fish assemblages on massive Porites microatolls. Ichthyol Res. 51:165-171. https://doi.org/10.1007/s10228-004-0213-y

Norzagaray‐López CO, Calderón‐Aguilera LE, Hernández‐Ayón JM, Reyes‐Bonilla H, Carricart‐Ganivet JP, Cabral‐Tena RA, Balart EF. 2015. Low calcification rates and calcium carbonate production in Porites panamensis at its northernmost geographic distribution. Mar Ecol. 36(4):1244-1255. https://doi.org/10.1111/maec.12227

Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P, O’Hara R, Solymos P, Stevens M, Szoecs E, et al. 2019. vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan

Olán-González M, Reyes-Bonilla H, Álvarez-Filip L, Pérez-España H, Olivier D. 2020. Fish diversity divergence between tropical eastern pacific and tropical western Atlantic coral reefs. Environ Biol Fish. 103:1323-1341. https://doi.org/10.1007/s10641-020-01026-y

Palacios-Salgado DS, Burnes-Romo LA, Tavera JJ, Ramirez-Valdez A. 2012. Endemic fishes of the Cortez biogeographic province (easternEastern Pacific Ocean). Acta Ichthyol Piscat. 42(3):153-164. https://doi.org/10.3750/AIP2011.42.3.01

R Core Team. 2022. R: A language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing; [accessed 2023 Mar 03]. https://www.R-project.org/

Reyes-Bonilla H, Calderón-Aguilera LE, Cruz-Piñon G, Medina-Rosas P, López-Pérez RA, Herrero-Pérezrul MD, Leyte-Morales GE, Cupul-Magaña AL, Carriquiry-Beltrán JD. 2005. Atlas de corales pétreos (Anthozoa: Scleractinia) del Pacífico mexicano. Guadalajara (Mexico): Universidad de Guadalajara, TRICICLO. 124 p.

Reyes-Bonilla H, López-Pérez RA. 2009. Corals and coral-reef communities in the Gulf of California. In: Johnson ME, Ledesma-Vázquez J (eds.), Atlas of Coastal Ecosystems in the Western Gulf of California: Tracking Limestone Deposits on the Margin of a Young Sea. Tucson (USA): University of Arizona Press. p. 43-55.

Reyes-Bonilla H. 2003. Coral reefs of the Pacific coast of Mexico. In: Cortés, J. (eds.), Latin American Coral Reefs. Amsterdam (Netherlands): Elsevier Science. p. 331-349. https://doi.org/10.1016/B978-044451388-5/50015-1

Ricart AM, Rodríguez-Zaragoza FA, González-Salas C, Ortiz M, Cupul-Magaña AL, Adjeroud M. 2016. Coral reef fish assemblages at Clipperton Atoll (Eastern Tropical Pacific) and their relationship with coral cover. Sci Mar. 80(4):479-486. https://doi.org/10.3989/scimar.04301.12B

Richardson LE, Graham NA, Pratchett MS, Hoey AS. 2017. Structural complexity mediates functional structure of reef fish assemblages among coral habitats. Environ Biol Fishes. 100:193-207. https://doi.org/10.1007/s10641-016-0571-0

Robertson DR, Allen GR, Peña EC, Estape A. 2024. Peces Costeros del Pacífico Oriental Tropical: sistema de Información en línea. Balboa (Panamá): Smithsonian Tropical Research Institute; [accessed 2024 Nov 05]. http://biogeodb.stri.si.edu/sftep/es/pages

Rosenblatt RH, Taylor Jr LR. 1971. The Pacific species of the clinid fish tribe Starksiini. Pac Sci. 25:436-463.

Salas-Moya C, Fabregat-Malé S, Vargas-Castillo R, Valverde JM, Vásquez-Fallas F, Sibaja-Cordero J, Alvarado JJ. 2021. Pocillopora cryptofauna and their response to host coral mortality. Symbiosis. 84(1):91-103. https://doi.org/10.1007/s13199-021-00771-7

Shi H, Wen Z, Paull D, Guo M. 2016. A framework for quantifying the thermal buffering effect of microhabitats. Biol Conserv. 204:175-180. https://doi.org/10.1016/j.biocon.2016.11.006

Storlazzi CD, Dartnell P, Hatcher GA, Gibbs AE. 2016. End of the chain? Rugosity and fine-scale bathymetry from existing underwater digital imagery using structure-from-motion (SfM) technology. Coral Reefs. 35(3):889-894. http://dx.doi.org/10.1007/s00338-016-1462-8

Tabugo SRM, Manzanares DL, Malawani AD. 2016. Coral reef assessment and monitoring made easy using Coral Point Count with Excel extensions (CPCe) software in Calangahan, Lugait, Misamis Oriental, Philippines. Comput Ecol Softw. 6(1):21-30.

Troyer EM, Coker DJ, Berumen ML. 2018. Comparison of cryptobenthic reef fish communities among microhabitats in the Red Sea. PeerJ. 6:e5014. https://doi.org/10.7717/peerj.5014

Urbina-Barreto I, Chiroleu F, Pinel R, Fréchon L, Mahamadaly V, Elise S, Kulbicki M, Quod JP, Dutrieux E, Garnier R, et al. 2021. Quantifying the shelter capacity of coral reefs using photogrammetric 3D modeling: From colonies to reefscapes. Ecol Indic. 121:107151. https://doi.org/10.1016/j.ecolind.2020.107151

Urbina‐Barreto I, Elise S, Guilhaumon F, Bruggemann JH, Pinel R, Kulbicki M, Vigliola L, Mou-Tham G, Mahamadaly V, Facon M, et al. 2022. Underwater photogrammetry reveals new links between coral reefscape traits and fishes that ensure key functions. Ecosphere. 13(2):e3934. https://doi.org/10.1002/ecs2.3934

Ventura D, Dubois SF, Bonifazi A, Jona-Lasinio G, Seminara M, Gravina MF, Ardizzone G. 2020. Integration of close‐range underwater photogrammetry with inspection and mesh processing software: a novel approach for quantifying ecological dynamics of temperate biogenic reefs. Remote Sens Ecol Conserv. 7(2):169-186. https://doi.org/10.1002/rse2.178

Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. New York (USA): Springer-Verlag. 260 p.

Most read articles by the same author(s)