Comparación de la riqueza y abundancia de peces arrecifales criptobentónicos en microhábitats coralinos y rocosos en Bahía de los Ángeles, Golfo de California
Contenido principal del artículo
Resumen
Los ecosistemas rocosos-coralinos poseen hábitats altamente heterogéneos y comunidades de peces funcionalmente diversas. En estos ecosistemas, los microhábitats coralinos juegan un papel importante al proporcionar un subconjunto de los recursos disponibles a la criptofauna, entre los que destacan los peces arrecifales criptobentónicos (PACB) por su alta abundancia y diversidad. Este grupo íctico, que mide menos de 5 cm de longitud en su etapa adulta, presenta un camuflaje visual y conductual altamente especializado, lo que a menudo resulta en su subrepresentación en los estudios. Debido a la escasez de estudios y la alta complejidad taxonómica de los PACB, exploramos la asociación entre los PACB y el coral masivo Porites panamensis en Bahía de los Ángeles, Golfo de California, y el sustrato rocoso. Hipotetizamos que la densidad de PACB será mayor en microhábitats coralinos debido a que estos microhábitats son tridimensionalmente más complejos. Se realizaron 2 muestreos extractivos en marzo y octubre de 2022 (n = 16). En total, se recolectaron 238 individuos de 14 especies de peces pertenecientes a 5 familias; el 76.62% de la abundancia total estuvo representada por 5 especies, y las familias Gobiidae, Tripterygiidae y Chaenopsidae fueron las mejor representadas. La densidad promedio de PACB en los microhábitats de P. panamensis fue 2 veces mayor que en los microhábitats rocosos (W = 46.5, P = 0.036). Además, la estructura y composición del ensamblaje de PACB fue diferente entre los microhábitats (Pseudo-F = 4.41, P = 0.004). Los resultados demuestran la importancia de P. panamensis como microhábitat y su influencia en la configuración bentónica de los PACB. Ante el creciente deterioro de la cobertura coralina y la pérdida de la complejidad estructural del hábitat, los resultados de este estudio son cruciales para entender los cambios a largo plazo en la criptofauna.
Descargas
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Este es un artículo de acceso abierto distribuido bajo una licencia Creative Commons Attribution 4.0, que le permite compartir y adaptar el trabajo, siempre que dé el crédito apropiado al autor o autores originales y la fuente, proporcione un enlace a Creative Commons licencia, e indicar si se realizaron cambios. Las figuras, tablas y otros elementos del artículo están incluidos en la licencia CC BY 4.0 del artículo, a menos que se indique lo contrario. El título de la revista está protegido por derechos de autor y no está sujeto a esta licencia. La escritura de licencia completa se puede ver aquí.
Métrica
Citas
Aburto-Oropeza O, Balart EF. 2001. Community structure of reef fish in several habitats in the Gulf of California. Mar Ecol. 22:283-305. https://doi.org/10.1046/j.1439-0485.2001.01747.x
Ackerman JL, Bellwood DR. 2000. Reef fish assemblages: a re-evaluation using enclosed rotenone stations. Mar Ecol Prog Ser. 206:227-237. http://dx.doi.org/10.3354/meps206227
Alzate A, Zapata FA, Giraldo A. 2014. A comparison of visual and collection-based methods for assessing community structure of coral reef fishes in the Tropical Eastern Pacific. Rev Biol Trop. 62:359-371. http://dx.doi.org/10.15517/rbt.v62i0.16361
Arias-González JE, Done TJ, Page CA, Cheal A, Kininmonth S, Garza-Pérez JR. 2006. Towards a reefscape ecology: relating biomass and trophic structure of fish assemblages to habitat at Davies Reef, Australia. Mar Ecol Prog Ser. 320:29-41. https://doi.org/10.3354/meps320029
Benfield S, Baxter L, Guzman HM, Mair JM. 2008. A comparison of coral reef and coral community fish assemblages in Pacific Panama and environmental factors governing their structure. J Mar Biol Assoc UK. 88(7):1331-1341. https://doi.org/10.1017/S0025315408002002
Brandl SJ, Casey JM, Meyer CP. 2020. Dietary and habitat niche partitioning in congeneric cryptobenthic reef fish species. Coral Reefs. 39:305-317. https://doi.org/10.1007/s00338-020-01892-z
Brandl SJ, Goatley CH, Bellwood DR, Tornabene L. 2018. The hidden half: ecology and evolution of cryptobenthic fishes on coral reefs. Biol Rev. 93(4):1846-1873. https://doi.org/10.1111/brv.12423
Brooks AJ, Holbrook SJ, Schmitt RJ. 2007. Patterns of microhabitat use by fishes in the patch-forming coral Porites rus. Raffles B Zool. 14:245-254.
Brusca RC. 2010. The Gulf of California: Biodiversity and Conservation. Tucson (USA): University of Arizona Press. 400 p.
Burns JHR, Delparte D, Gates RD, Takabayashi M. 2015. Integrating structure-from-motion photogrammetry with geospatial software as a novel technique for quantifying 3D ecological characteristics of coral reefs. PeerJ. 3:e1077. http://dx.doi.org/10.7717/peerj.1077
Bussing WA. 1990. New species of gobiid fishes of the genera Lythrypnus, Elacatinus and Chriolepis from the eastern tropical Pacific. Rev Biol Trop. 38(1):99-118. https://revistas.ucr.ac.cr/index.php/rbt/article/view/24944
Coker DJ, Wilson SK, Pratchett MS. 2014. Importance of live coral habitat for reef fishes. Rev Fish Biol Fisher. 24:89-126. https://doi.org/10.1007/s11160-013-9319-5
Curtis JS, Galvan JW, Primo A, Osenberg CW, Stier AC. 2023. 3D photogrammetry improves measurement of growth and biodiversity patterns in branching corals. Coral Reefs. 42(3):623-627. https://doi.org/10.1007/s00338-023-02367-7
Depczynski M, Bellwood DR. 2003. The role of cryptobenthic reef fishes in coral reef trophodynamics. Mar Ecol Prog Ser. 256:183-191. http://dx.doi.org/10.3354/meps256183
Depczynski M, Bellwood DR. 2004. Microhabitat utilisation patterns in cryptobenthic coral reef fish communities. Mar Biol. 145(3):455-463. https://doi.org/10.1007/s00227-004-1342-6
Dominici-Arosemena A, Wolff M. 2006. Reef fish community structure in the Tropical Eastern Pacific (Panamá): living on a relatively stable rocky reef environment. Helgol Mar Res. 60:287-305. https://doi.org/10.1007/s10152-006-0045-4
Dubuc A, Quimbayo JP, Alvarado JJ, Araya-Arce T, Arriaga A, Ayala-Bocos A, Casas-Maldonado J, Chasqui L, Cortés J, Cupul-Magaña A, et al. 2023. Patterns of reef fish taxonomic and functional diversity in the Eastern Tropical Pacific. Ecography. 2023:e06536. https://doi.org/10.1111/ecog.06536
Fricke R, Eschmeyer WN, van der Laan R. 2023. Eschmeyer’s catalog of fishes: genera, species, references; [accessed 2023 Mar 03]. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp
Fukunaga A, Burns JH, Craig BK, Kosaki RK. 2019. Integrating three-dimensional benthic habitat characterization techniques into ecological monitoring of coral reefs. J Mar Sci Eng. 7(2):27. https://doi.org/10.3390/jmse7020027
Galland GR. 2013. The conservation and ecology of cryptobenthic fishes on rocky reefs in the Gulf of California, Mexico [dissertation]: University of California, San Diego. 171 p.
Galland GR, Erisman B, Aburto-Oropeza O, Hastings PA. 2017. Contribution of cryptobenthic fishes to estimating community dynamics of sub-tropical reefs. Mar Ecol Prog Ser. 584:175-184. https://doi.org/10.3354/meps12364
Galván-Villa CM, López-Uriarte E, Arreola-Robles JL. 2011. Diversidad, estructura y variación temporal del ensamble de peces asociados al arrecife coralino de playa Mora, bahía de Tenacatita, México. Hidrobiológica. 21(2):135-146.
Ginsburg I. 1938. Eight new species of gobioid fishes from the American Pacific coast. Allan Hancock Pacific Expedition 1932–40. 2(7):109-121. http://doi.org/10.25549/hancock-c82-14202
Glynn PW, Alvarado JJ, Banks S, Cortés J, Feingold JS, Jiménez C, Maragos JE, Martínez P, Maté JL, Moanga DA, et al. 2017. Eastern Pacific Coral Reef Provinces, Coral Community Structure and Composition: An Overview. In: Glynn P, Manzello D, Enochs I (eds.), Coral Reefs of the Eastern Tropical Pacific. Coral Reefs of the World, vol 8. Dordrecht (Netherlands): Springer. p. 107-176. https://doi.org/10.1007/978-94-017-7499-4_5
González‐Cabello A, Bellwood DR. 2009. Local ecological impacts of regional biodiversity on reef fish assemblages. J Biogeogr. 36(6):1129-1137. https://doi.org/10.1111/j.1365-2699.2008.02065.x
González-Murcia S, Alvarado-Larios R, Guerra J, Logan M. 2023. The good and the better, sampling tropical intertidal rock pool fishes: a comparison between visual census vs. rock pool bailing method. Cienc Mar. 49. https://doi.org/10.7773/cm.y2023.3404
Hastings PA, Galland GR. 2010. Ontogeny of microhabitat use and two-step recruitment in a specialist reef fish, the Browncheek Blenny (Chaenopsidae). Coral Reefs. 29:155-164. https://doi.org/10.1007/s00338-009-0565-x
Holbrook SJ, Brooks AJ, Schmitt RJ, Stewart HL. 2008. Effects of sheltering fish on growth of their host corals. Mar Biol. 155:521-530. https://doi.org/10.1007/s00227-008-1051-7
Kohler KE, Gill SM. 2006. Coral Point Count with Excel extensions (CPCe): A Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Comput Geosci-UK. 32:1259-1269. https://doi.org/10.1016/j.cageo.2005.11.009
Komyakova V, Munday PL, Jones GP. 2013. Relative importance of coral cover, habitat complexity, and diversity in determining the structure of reef fish communities. PLOS ONE. 8(12):e83178. https://doi.org/10.1371/journal.pone.0083178
López-Pérez RA, Calderon-Aguilera LE, Zepeta-Vilchis RC, López-Pérez MI, López-Ortiz AM. 2013. Species composition, habitat configuration and seasonal changes of coral reef fish assemblages in western Mexico. J Appl Ichthyol. 29:437-448. https://doi.org/10.1111/jai.12029
López-Pérez A, Granja-Fernández R, Ramírez-Chávez E, Valencia-Méndez O, Rodríguez-Zaragoza FA, González-Mendoza T, Martínez-Castro A. 2024. Widespread coral bleaching and mass mortality of reef-building corals in southern Mexican Pacific reefs due to 2023 El Niño warming. Oceans. 5(2):196-209. https://doi.org/10.3390/oceans5020012
Magurran AE. 2003. Measuring biological diversity. Hoboken, NJ (USA): Wiley-Blackwell. 272 p.
Martínez-Fuentes LM, Norzagaray-López CO, Hernández-Ayón JM, Solana-Arellano ME, Uribe-López AG, Valdivieso-Ojeda JA, Camacho-Ibar V, Mejía-Trejo A, Delgadillo-Hinojosa F, Cabral-Tena RA. 2022. Influence of the advection of water masses in the Ballenas Channel on the CO2 system in Bahía de los Angeles (Mexico). Reg Stud Mar Sci. 55:102505. https://doi.org/10.1016/j.rsma.2022.102505
Morrison ML, Marcot B, Mannan W. 2012. Wildlife-Habitat Relationships: Concepts and Applications. 3rd ed. Washington DC (USA): Island Press. 494 p.
Moynihan JL, Hall AE, Kingsford MJ. 2022. Interrelationships between soft corals and reef-associated fishes on inshore-reefs of the Great Barrier Reef. Mar Ecol Prog Ser. 698:15-28. https://doi.org/10.3354/meps14160
Muruga P, Siqueira AC, Bellwood DR. 2024. Meta-analysis reveals weak associations between reef fishes and corals. Nat Ecol Evol. 8:676-685. https://doi.org/10.1038/s41559-024-02334-7
Nanami A, Nishihira M. 2004. Microhabitat association and temporal stability in reef fish assemblages on massive Porites microatolls. Ichthyol Res. 51:165-171. https://doi.org/10.1007/s10228-004-0213-y
Norzagaray‐López CO, Calderón‐Aguilera LE, Hernández‐Ayón JM, Reyes‐Bonilla H, Carricart‐Ganivet JP, Cabral‐Tena RA, Balart EF. 2015. Low calcification rates and calcium carbonate production in Porites panamensis at its northernmost geographic distribution. Mar Ecol. 36(4):1244-1255. https://doi.org/10.1111/maec.12227
Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P, O’Hara R, Solymos P, Stevens M, Szoecs E, et al. 2019. vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan
Olán-González M, Reyes-Bonilla H, Álvarez-Filip L, Pérez-España H, Olivier D. 2020. Fish diversity divergence between tropical eastern pacific and tropical western Atlantic coral reefs. Environ Biol Fish. 103:1323-1341. https://doi.org/10.1007/s10641-020-01026-y
Palacios-Salgado DS, Burnes-Romo LA, Tavera JJ, Ramirez-Valdez A. 2012. Endemic fishes of the Cortez biogeographic province (easternEastern Pacific Ocean). Acta Ichthyol Piscat. 42(3):153-164. https://doi.org/10.3750/AIP2011.42.3.01
R Core Team. 2022. R: A language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing; [accessed 2023 Mar 03]. https://www.R-project.org/
Reyes-Bonilla H, Calderón-Aguilera LE, Cruz-Piñon G, Medina-Rosas P, López-Pérez RA, Herrero-Pérezrul MD, Leyte-Morales GE, Cupul-Magaña AL, Carriquiry-Beltrán JD. 2005. Atlas de corales pétreos (Anthozoa: Scleractinia) del Pacífico mexicano. Guadalajara (Mexico): Universidad de Guadalajara, TRICICLO. 124 p.
Reyes-Bonilla H, López-Pérez RA. 2009. Corals and coral-reef communities in the Gulf of California. In: Johnson ME, Ledesma-Vázquez J (eds.), Atlas of Coastal Ecosystems in the Western Gulf of California: Tracking Limestone Deposits on the Margin of a Young Sea. Tucson (USA): University of Arizona Press. p. 43-55.
Reyes-Bonilla H. 2003. Coral reefs of the Pacific coast of Mexico. In: Cortés, J. (eds.), Latin American Coral Reefs. Amsterdam (Netherlands): Elsevier Science. p. 331-349. https://doi.org/10.1016/B978-044451388-5/50015-1
Ricart AM, Rodríguez-Zaragoza FA, González-Salas C, Ortiz M, Cupul-Magaña AL, Adjeroud M. 2016. Coral reef fish assemblages at Clipperton Atoll (Eastern Tropical Pacific) and their relationship with coral cover. Sci Mar. 80(4):479-486. https://doi.org/10.3989/scimar.04301.12B
Richardson LE, Graham NA, Pratchett MS, Hoey AS. 2017. Structural complexity mediates functional structure of reef fish assemblages among coral habitats. Environ Biol Fishes. 100:193-207. https://doi.org/10.1007/s10641-016-0571-0
Robertson DR, Allen GR, Peña EC, Estape A. 2024. Peces Costeros del Pacífico Oriental Tropical: sistema de Información en línea. Balboa (Panamá): Smithsonian Tropical Research Institute; [accessed 2024 Nov 05]. http://biogeodb.stri.si.edu/sftep/es/pages
Rosenblatt RH, Taylor Jr LR. 1971. The Pacific species of the clinid fish tribe Starksiini. Pac Sci. 25:436-463.
Salas-Moya C, Fabregat-Malé S, Vargas-Castillo R, Valverde JM, Vásquez-Fallas F, Sibaja-Cordero J, Alvarado JJ. 2021. Pocillopora cryptofauna and their response to host coral mortality. Symbiosis. 84(1):91-103. https://doi.org/10.1007/s13199-021-00771-7
Shi H, Wen Z, Paull D, Guo M. 2016. A framework for quantifying the thermal buffering effect of microhabitats. Biol Conserv. 204:175-180. https://doi.org/10.1016/j.biocon.2016.11.006
Storlazzi CD, Dartnell P, Hatcher GA, Gibbs AE. 2016. End of the chain? Rugosity and fine-scale bathymetry from existing underwater digital imagery using structure-from-motion (SfM) technology. Coral Reefs. 35(3):889-894. http://dx.doi.org/10.1007/s00338-016-1462-8
Tabugo SRM, Manzanares DL, Malawani AD. 2016. Coral reef assessment and monitoring made easy using Coral Point Count with Excel extensions (CPCe) software in Calangahan, Lugait, Misamis Oriental, Philippines. Comput Ecol Softw. 6(1):21-30.
Troyer EM, Coker DJ, Berumen ML. 2018. Comparison of cryptobenthic reef fish communities among microhabitats in the Red Sea. PeerJ. 6:e5014. https://doi.org/10.7717/peerj.5014
Urbina-Barreto I, Chiroleu F, Pinel R, Fréchon L, Mahamadaly V, Elise S, Kulbicki M, Quod JP, Dutrieux E, Garnier R, et al. 2021. Quantifying the shelter capacity of coral reefs using photogrammetric 3D modeling: From colonies to reefscapes. Ecol Indic. 121:107151. https://doi.org/10.1016/j.ecolind.2020.107151
Urbina‐Barreto I, Elise S, Guilhaumon F, Bruggemann JH, Pinel R, Kulbicki M, Vigliola L, Mou-Tham G, Mahamadaly V, Facon M, et al. 2022. Underwater photogrammetry reveals new links between coral reefscape traits and fishes that ensure key functions. Ecosphere. 13(2):e3934. https://doi.org/10.1002/ecs2.3934
Ventura D, Dubois SF, Bonifazi A, Jona-Lasinio G, Seminara M, Gravina MF, Ardizzone G. 2020. Integration of close‐range underwater photogrammetry with inspection and mesh processing software: a novel approach for quantifying ecological dynamics of temperate biogenic reefs. Remote Sens Ecol Conserv. 7(2):169-186. https://doi.org/10.1002/rse2.178
Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. New York (USA): Springer-Verlag. 260 p.