Temporal oceanographic variation using satellite imagery data in the central Mexican Pacific convergence zone
Main Article Content
Abstract
The oceanographic variation of the central Mexican Pacific (CMP) is mainly driven by the California Current and the Mexican Coastal Current, which generate a convergence zone. Little information is available regarding changes in oceanographic variables at the mesoscale level in the CMP. Therefore, this study characterized 6 oceanographic variables (sea surface temperature, chlorophyll concentration [Chl], primary productivity [PP], diffuse attenuation coefficient [K490], and particulate inorganic/organic carbon concentration [PIC, POC]) in the CMP from 2010 to 2017 and their relationships with El Niño/Southern Oscillation (ENSO). The variables were standardized to monthly pixel values of 0.08 latitude degrees, and the study area covered 48,846.48 km2. Friedman tests were used to compare the temporal variation in the variables, while Spearman correlations were used to evaluate the relationship between each variable and the Multivariate ENSO Index (MEI). A cross-correlation analysis was performed to determine the temporal lag between the oceanographic variables and the MEI. The cyclicity of the variation in the CMP was determined by spectral analysis. All variables showed significant differences between months and years. Two seasons defined by temperature were also detected: a cold season (December–June), in which high values of these variables were observed, and a warm season (July–November), in which low values of these variables were observed. No variables were correlated with the MEI; however, a 4-month time lag was identified between the variables and the MEI. The cyclicity of the variables corresponded to the cold and warm seasons. The cold phase of ENSO increased the values of PP, Chl, and K490 up to 4 times compared to those of other years. Taken together, the observed variation in oceanographic conditions makes the CMP one of the most dynamic coastal regions of the Mexican Pacific.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open access article distributed under a Creative Commons Attribution 4.0 License, which allows you to share and adapt the work, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Figures, tables and other elements in the article are included in the article’s CC BY 4.0 license, unless otherwise indicated. The journal title is protected by copyrights and not subject to this license. Full license deed can be viewed here.
Metrics
References
Álvarez-Borrego S, Lara-Lara JR. 1991. The physical environment and primary productivity of the Gulf of California. In: Dauphin JP, Simonet BRT (eds.), The Gulf and Peninsular Province of the Californias. Tulsa (OK): AAPG. p. 555-567. http://doi.org/10.1306/M47542C26 DOI: https://doi.org/10.1306/M47542C26
Alvarez-Borrego SA, Schwartzlose RA. 1979. Masas de agua del Golfo de California = Water masses of the Gulf of California. Cienc Mar. 6(1–2):43-63. https://doi.org/10.7773/cm.v6i1.350 DOI: https://doi.org/10.7773/cm.v6i1.350
Anderson DM, Glibert PM, Burkholder JM. 2002. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries. 25:704-726. https://doi.org/10.1007/BF02804901 DOI: https://doi.org/10.1007/BF02804901
Audzijonyte A, Richards SA, Stuart-Smith RD, Pecl G, Edgar GJ, Barrett NS, Payne N, Blanchard JL. 2020. Fish body sizes change with temperature but not all species shrink with warming. Nat Ecol Evol. 4:809-814. https://doi.org/10.1038/s41559-020-1171-0 DOI: https://doi.org/10.1038/s41559-020-1171-0
Badan-Dangon A. 1998. Coastal circulation from the Galápagos to the Gulf of California. In: Robinson AR, Brink, KH (eds.), The Sea, The Global Coastal Ocean Regional Studies and Syntheses, vol. 11. Cambridge (MA): John Wiley and Sons. p. 315-334.
Ballance LT, Pitman RL, Fiedler PC. 2006. Oceanographic influences on seabirds and cetaceans of the eastern tropical Pacific: A review. Prog Oceanogr. 69(2–4):360-390. https://doi.org/10.1016/j.pocean.2006.03.013 DOI: https://doi.org/10.1016/j.pocean.2006.03.013
Brander K. 2010. Impacts of climate change on fisheries. J Mar Syst. 79(3–4):389-402. https://doi.org/10.1016/j.jmarsys.2008.12.015 DOI: https://doi.org/10.1016/j.jmarsys.2008.12.015
Brodeur RD, Pearcy WG, Ralston S. 2003. Abundance and distribution patterns of nekton and micronekton in the Northern California Current transition zone. J Oceanogr. 59:515-535. https://doi.org/10.1023/A:1025548801541 DOI: https://doi.org/10.1023/A:1025548801541
Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S, Bruckner A, Chiriboga A, Cortés J, Delbeek JC, DeVantier L, et al. 2008. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science. 321(5888):560-563. https://doi.org/10.1126/science.1159196 DOI: https://doi.org/10.1126/science.1159196
Cepeda-Morales J, Beier E, Gaxiola-Castro G, Lavín MF, Godínez VM. 2009. Effect of the oxygen minimum zone on the second chlorophyll maximum in the Eastern Tropical Pacific off Mexico = Efecto de la zona del mínimo de oxígeno en el segundo máximo de clorofila en el Pacífico Oriental Tropical Mexicano. Cienc Mar. 35(4):389-403. https://doi.org/10.7773/cm.v35i4.1622 DOI: https://doi.org/10.7773/cm.v35i4.1622
Cepeda-Morales J, Gaxiola-Castro G, Beier E, Godínez VM. 2013. The mechanisms involved in defining the northern boundary of the shallow oxygen minimum zone in the eastern tropical Pacific Ocean off Mexico. Deep Sea Res Part I. 76:1-12. https://doi.org/10.1016/j.dsr.2013.02.004 DOI: https://doi.org/10.1016/j.dsr.2013.02.004
Cepeda-Morales J, Hernández-Vásquez F, Rivera-Caicedo J, Romero-Bañuelos C, Inda-Díaz E, Hernández-Almeida O. 2017. Seasonal variability of satellite derived chlorophyll and sea surface temperatura on the continental shelf of Nayarit, Mexico = Variabilidad estacional de clorofila y temperatura superficial del mar satelital en la plataforma continental de Nayarit, México. BioCien. 4(6):1-17. https://doi.org/10.15741/revbio.04.06.07 DOI: https://doi.org/10.15741/revbio.04.06.07
Collins CA, Garfield N, Mascarenhas ASJ, Spearman MG, Rago TA. 1997. Ocean current across the entrance to the Gulf of California. J Geophys Res. 102(C9):20927-20936. https://doi.org/10.1029/97JC01302 DOI: https://doi.org/10.1029/97JC01302
Cortés-Lara M, Cortés-Altamirano R, Cupul-Magaña AL, Rodríguez-Nava LV, Vega-Villasante F. 2012. Guía de Florecimientos Microalgales (2000–2011) Causantes de Mareas Rojas en la Bahía de Banderas Jalisco-Nayarit. Guadalajara (Mexico): Universidad de Guadalajara. 104 p.
Di Lorenzo E, Cobb KM, Furtado JC, Schneider N, Anderson BT, Bracco A, Alexander MA, Vimont DJ. 2010. Central Pacific El Niño and decadal climate change in the North Pacific Ocean. Nat Geosci. 3:762-765. https://doi.org/10.1038/ngeo984 DOI: https://doi.org/10.1038/ngeo984
Donelson JM, Munday PL, McCormick MI, Pankhurst NW, Pankhurst PM. 2010. Effects of elevated water temperature and food availability on the reproductive performance of a coral reef fish. Mar Ecol Prog Ser. 401:233-243. https://doi.org/10.3354/meps08366 DOI: https://doi.org/10.3354/meps08366
Espinosa-Carreón LE, Valdez-Holguín JE. 2007. Variabilidad inter-anual de clorofila en el golfo de California = Gulf of California interannual chlorophyll variability. Ecol Appl. 6:83-92. DOI: https://doi.org/10.21704/rea.v6i1-2.344
Escalante F, Valdez-Holguín JE, Álvarez-Borrego S, Lara-Lara JR. 2013. Temporal and spatial variation of sea surface temperature, chlorophyll a, and primary productivity in the Gulf of California = Variación temporal y espacial de temperatura superficial del mar, clorofila a y productividad primaria en el golfo de California. Cienc Mar. 39(2):203-215. https://doi.org/10.7773/cm.v39i2.2233 DOI: https://doi.org/10.7773/cm.v39i2.2233
Fiedler PC, Talley LD. 2006. Hydrography of the eastern tropical Pacific: A review. Prog Oceanogr. 69(2–4):143-180. https://doi.org/10.1016/j.pocean.2006.03.008 DOI: https://doi.org/10.1016/j.pocean.2006.03.008
Filonov AE, Tereshchenko IE, Monzón CO, González-Ruelas ME, Godínez-Domínguez E. 2000. Variabilidad estacional de los campos de temperatura y salinidad de la zona costera de los estados de Jalisco y Colima, México = Seasonal variability of the temperature and salinity fields in the coastal zone of the states of Jalisco and Colima, Mexico. Cienc Mar. 26(2):303-321. http://doi.org/10.7773/cm.v26i2.577 DOI: https://doi.org/10.7773/cm.v26i2.577
Gafar NA, Eyre BD, Schulz KG. 2019. Particulate inorganic to organic carbon production as a predictor for coccolithophorid sensitivity to ongoing ocean acidification. Limnol Ocean Lett. 4(3):62-70. https://doi.org/10.1002/lol2.10105 DOI: https://doi.org/10.1002/lol2.10105
García-Oliva F, Camou A, Maass M. 2002. El clima de la región central de la costa del Pacífico mexicano. In: Noguera FA, Vega JH, García-Aldrete AN, Quesada M (eds.), Historia Natural del Bosque Caducifolio de Chamela. Mexico: Instituto de Biología de la UNAM. p. 3-10.
García-Oliva F, Ezcurra E, Galicia L. 1991. Pattern of rainfall distribution in the central Pacific coast of Mexico. Geogr Ann Ser A. 73(3–4):179-186. https://doi.org/10.1080/04353676.1991.11880343 DOI: https://doi.org/10.1080/04353676.1991.11880343
[IPCC] Intergovernmental Panel on Climate Change. 2002. Climate change and biodiversity, Technical Paper V. [place unknown]: IPCC. 86 p; accessed 2020 Jul 17. https://wedocs.unep.org/20.500.11822/32705.
Green BS, Fisher R. 2004. Temperature influences swimming speed, growth and larval duration in coral reef fish larvae. J Exp Mar Biol Ecol. 299:115-132. https://doi.org/10.1016/j.jembe.2003.09.001 DOI: https://doi.org/10.1016/j.jembe.2003.09.001
Harley CDG, Randall Hughes A, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL. 2006. The impacts of climate change in coastal marine systems. Ecol Lett. 9(2):228-241.
https://doi.org/10.1111/j.1461-0248.2005.00871.x DOI: https://doi.org/10.1111/j.1461-0248.2005.00871.x
Hopkins J, Henson SA, Poulton AJ, Balch WM. 2019. Regional characteristics of the temporal variability in the global particulate inorganic carbon inventory. Glob Biogeo Cycles. 33(11):1328-1338.
https://doi.org/10.1029/2019GB006300 DOI: https://doi.org/10.1029/2019GB006300
Kumar A, Hoerling MP. 2003. The nature and causes for the delayed atmospheric response to El Niño. J Clim. 16(9):1391-1403. https://doi.org/10.1175/1520-0442-16.9.1391 DOI: https://doi.org/10.1175/1520-0442-16.9.1391
Lavín MF, Beier E, Gómez-Valdés J, Godínez VM, García J. 2006. On the summer poleward coastal current off SW México. Geophys Res Lett. 33(2):2-5. https://doi.org/10.1029/2005GL024686 DOI: https://doi.org/10.1029/2005GL024686
Lavín MF, Marinone SG. 2003. An overview of the physical oceanography of the Gulf of California. In: Velasco Fuentes OU, Sheinbaum J, Ochoa J (eds.), Nonlinear Processes in Geophysical Fluid Dynamics. Dordrecht (Netherlands): Springer. 378 p. https://doi.org/10.1007/978-94-010-0074-1_11 DOI: https://doi.org/10.1007/978-94-010-0074-1_11
Ledesma-Vázquez J, Johnson ME, González- Yajimovich O, Santamaría-del-Angel E. 2009. Gulf of California Geography, Geological Origins, Oceanography, and Sedimentation Patterns. In: Johnson ME, Ledesma-Vázquez J (eds.), Atlas of Coastal Ecosystems in the Gulf of California: Tracking Limestone Deposits on The Margin of a Young Sea. Tucson (AZ): The University of Arizona Press. p. 1-10.
Lee T, McPhaden MJ. 2010. Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett. 37(14):1-5. https://doi.org/10.1029/2010GL044007 DOI: https://doi.org/10.1029/2010GL044007
López-Sandoval DC, Lara-Lara JR, Álvarez-Borrego S. 2009a. Phytoplankton production by remote sensing in the region off Cabo Corrientes, Mexico = Producción fitoplanctónica por sensores remotos en la región frente a Cabo Corrientes, México. Hidrobiol. 19:185-192.
López-Sandoval DC, Lara-Lara JR, Lavín MF, Álvarez-Borrego S, Gaxiola-Castro G. 2009b. Primary productivity in the eastern tropical Pacific off Cabo Corrientes, Mexico = Productividad primaria en el Pacífico oriental tropical adyacente a Cabo Corrientes, México. Cienc Mar. 35(2):169-182.
https://doi.org/10.7773/cm.v35i2.1530 DOI: https://doi.org/10.7773/cm.v35i2.1530
Magaña-Rueda V, Pérez JL, Conde C. 1997. El fenómeno de El Niño y la Oscilación del Sur y sus impactos en México. Ciencias. 51:14-18.
Maul GA, Williams F, Roffer M, Sousa FM. 1984. Remotely sensed oceanographic patterns and variability of bluefin tuna catch in the Gulf of Mexico. Oceanol Acta. 7(4):469-479.
McPhaden MJ, Zhang D. 2002. Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature. 415:603-608. https://doi.org/10.1038/415603a DOI: https://doi.org/10.1038/415603a
Mercado-Santana JA, Santamaría-del-Ángel E, González-Silvera A, Sánchez-Velasco L, Gracia-Escobar MF, Millán-Núñez R, Torres-Navarrete C. 2017. Productivity in the Gulf of California large marine ecosystem. Environ Dev. 22:18-29. https://doi.org/10.1016/j.envdev.2017.01.003 DOI: https://doi.org/10.1016/j.envdev.2017.01.003
Moncayo-Estrada R, Castro-Aguirre JL, De La-Cruz Agüero J. 2006. Lista sistemática de la ictiofauna de Bahía de Banderas. México. Rev Mex Biodivers. 77:67-80. DOI: https://doi.org/10.22201/ib.20078706e.2006.001.319
Páez-Osuna F, Sanchez-Cabeza JA, Ruiz-Fernández AC, Alonso-Rodríguez R, Piñón-Gimate A, Cardoso-Mohedano JG, Flores-Verdugo FJ, Carballo JL, Cisneros-Mata MA, Álvarez-Borrego S. 2016. Environmental status of the Gulf of California: A review of responses to climate change and climate variability. Earth-Sci Rev. 162:253-268. https://doi.org/10.1016/j.earscirev.2016.09.015 DOI: https://doi.org/10.1016/j.earscirev.2016.09.015
Palacios DM, Bograd SJ, Foley DG, Schwing FB. 2006. Oceanographic characteristics of biological hot spots in the North Pacific: A remote sensing perspective. Deep Sea Res Part II. 53(3–4):250-269. https://doi.org/10.1016/j.dsr2.2006.03.004 DOI: https://doi.org/10.1016/j.dsr2.2006.03.004
Pantoja DA, Marinone SG, Parés-Sierra A, Gómez-Valdivia F. 2012. Numerical modeling of seasonal and mesoscale hydrography and circulation in the Mexican Central Pacific = Modelación numérica de la hidrografía y circulación estacional y de mesoescala en el Pacífico central mexicano. Cienc Mar. 38(2):363-379. https://doi.org/10.7773/cm.v38i2.2007 DOI: https://doi.org/10.7773/cm.v38i2.2007
Reyes-Bonilla H. 2003. Coral reefs of the Pacific coast of México. In: Cortés J (ed.), Latin American Coral Reefs. Amsterdam (Netherlands): Elsevier Science B.V. p. 331-349. https://doi.org/10.1016/B978-044451388-5/50015-1 DOI: https://doi.org/10.1016/B978-044451388-5/50015-1
Reyes-Coca S, Troncoso-Gaytán R. 2001. “El Niño Oscilación del Sur” y los fenómenos hidrometeorológicos en Baja California: el evento de 1997-1998. INP. SAGARPA. México. Ciencia Pesquera. 15:89-96.
Ribas-Ribas M, Hernández-Ayón JM, Camacho-Ibar VF, Cabello-Pasini A, Mejia-Trejo A, Durazo R, Galindo-Bect S, Souza AJ, Forja JM, Siqueiros-Valencia A. 2011. Effects of upwelling, tides and biological processes on the inorganic carbon system of a coastal lagoon in Baja California. Estuar Coast Shelf Sci. 95(4):367-376. https://doi.org/10.1016/j.ecss.2011.09.017 DOI: https://doi.org/10.1016/j.ecss.2011.09.017
R Core Team. 2021. R: A language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing; accessed 08 December 2021. https://www.R-project.org/.
Robertson DR, Cramer KL. 2009. Shore fishes and biogeographic subdivisions of the Tropical Eastern Pacific. Mar Ecol Prog Ser. 380:1-17. https://doi.org/10.3354/meps07925 DOI: https://doi.org/10.3354/meps07925
Rodríguez-Troncoso AP, Carpizo-Ituarte E, Cupul-Magaña AL. 2016. Physiological response to high temperature in the Tropical Eastern Pacific coral Pocillopora verrucosa. Mar Ecol. 37:1168-1175. https://doi.org/10.1111/maec.12392 DOI: https://doi.org/10.1111/maec.12392
Simons RA, Mendelssohn R. 2012. ERDDAP-A Brokering Data Server for Gridded and Tabular Datasets. In: [AGU] American Geophysical Union (ed.), Fall Meeting Abstracts Vol. 2012. San Francisco (CA): American Geophysical Union. p. IN21B-1473; accessed 2018 May. https://coastwatch.pfeg.noaa.gov/erddap/index.
Sosa-Ávalos R, Espinosa-Carreón TL, Santamaría-del-Ángel E, Cepeda-Morales J, Mercado-Santana A, De la Cruz-Orozco ME, Lara-Lara JR, Álvarez-Borrego S, Gaxiola-Castro G. 2017. Diagnóstico y análisis de la producción primaria neta en los mares de México. Elem Pol Púb. 2(3):164-185.
Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie SA, et al. 2007. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience. 57(7):573-583. https://doi.org/10.1641/B570707 DOI: https://doi.org/10.1641/B570707
Speers AE, Besedin EY, Palardy JE, Moore C. 2016. Impacts of climate change and ocean acidification on coral reef fisheries: An integrated ecological-economic model. Ecol Econ. 128:33-43. https://doi.org/10.1016/j.ecolecon.2016.04.012 DOI: https://doi.org/10.1016/j.ecolecon.2016.04.012
Wild C, Hoegh-Guldberg O, Naumann MS, Colombo-Pallotta MF, Ateweberhan M, Fitt WK, Iglesias-Prieto R, Palmer C, Bythell JC, Ortiz J, et al. 2011. Climate change impedes reef ecosystem engineers. Mar Freshw Res. 62(2):205-215. https://doi.org/10.1071/MF10254 DOI: https://doi.org/10.1071/MF10254
Wolter K, Timlin MS. 2011. El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index. Int J Climatol. 31(7):1074-1087. https://doi.org/10.1002/joc.2336 DOI: https://doi.org/10.1002/joc.2336
Zamudio L, Leonardi AP, Meyers SD, O’Brien JJ. 2001. ENSO and eddies on the southwest coast of Mexico. Geophys Res Lett. 28(1):13-16. https://doi.org/10.1029/2000GL011814 DOI: https://doi.org/10.1029/2000GL011814
Zeitzschel B. 1969. Primary productivity in the Gulf of California. Mar Biol. 3:201-207. https://doi.org/10.1007/BF00360952 DOI: https://doi.org/10.1007/BF00360952