Variación oceanográfica temporal según datos de imágenes satelitales de la zona de convergencia del Pacífico central mexicano

Contenido principal del artículo

Carlos Vladimir Pérez-de Silva
Amilcar Leví Cupul-Magaña
Fabián Alejandro Rodríguez-Zaragoza
Alma Paola Rodríguez-Troncoso

Resumen

La variación oceanográfica del Pacífico central mexicano (PCM) está influenciada por la corriente de California y la corriente costera Mexicana, que generan una zona de convergencia. Existe poca información acerca de los cambios en las variables oceanográficas a nivel de mesoescala en el PCM. Por lo tanto, este estudio caracterizó 6 variables oceanográficas (temperatura superficial del mar, concentración de clorofila [Cl], productividad primaria [PP], coeficiente de atenuación difusa [K490] y concentración de carbono inorgánico/orgánico particulado [CIP, COP]) en el PCM de 2010 a 2017 y su relación con El Niño/Oscilación del Sur (ENOS). Las variables se estandarizaron a valores mensuales en píxeles de 0.08 grados latitudinales, y el área de estudio cubrió 48,846.48 km2. Para comparar la variación temporal en las variables, se utilizó la prueba de Friedman, y la relación entre cada variable y el Índice Multivariado de ENOS (IME) se obtuvo con una correlación de Spearman. Para establecer el desfase temporal entre las variables y el IME, se realizó una correlación cruzada. La ciclicidad de la variación en el PCM se determinó mediante un análisis espectral. Todas las variables mostraron diferencias significativas entre meses y años. Se detectaron 2 temporadas definidas por la temperatura, una temporada fría (diciembre-junio), con valores de las variables altos, y una temporada cálida (julio-noviembre), con valores de las variables bajos. Ninguna variable mostró correlación con el IME; sin embargo, se determinó un lapso de respuesta de 4 meses entre estas y el IME. La ciclicidad de las variables corresponde a la estación fría y la estación cálida. La fase fría del ENOS incrementó los valores de PP, Cl y K490 hasta 4 veces más en comparación con aquellos observados en otros años. La variación observada en las condiciones oceanográficas convierte al PCM en una de las regiones costeras más dinámicas del Pacífico mexicano.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Pérez-de Silva, C. V., Cupul-Magaña, A. L., Rodríguez-Zaragoza, F. A., & Rodríguez-Troncoso, A. P. (2023). Variación oceanográfica temporal según datos de imágenes satelitales de la zona de convergencia del Pacífico central mexicano. Ciencias Marinas, 49. https://doi.org/10.7773/cm.y2023.3260
Sección
Artículo de investigación

Métrica

Citas

Álvarez-Borrego S, Lara-Lara JR. 1991. The physical environment and primary productivity of the Gulf of California. In: Dauphin JP, Simonet BRT (eds.), The Gulf and Peninsular Province of the Californias. Tulsa (OK): AAPG. p. 555-567. http://doi.org/10.1306/M47542C26 DOI: https://doi.org/10.1306/M47542C26

Alvarez-Borrego SA, Schwartzlose RA. 1979. Masas de agua del Golfo de California = Water masses of the Gulf of California. Cienc Mar. 6(1–2):43-63. https://doi.org/10.7773/cm.v6i1.350 DOI: https://doi.org/10.7773/cm.v6i1.350

Anderson DM, Glibert PM, Burkholder JM. 2002. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries. 25:704-726. https://doi.org/10.1007/BF02804901 DOI: https://doi.org/10.1007/BF02804901

Audzijonyte A, Richards SA, Stuart-Smith RD, Pecl G, Edgar GJ, Barrett NS, Payne N, Blanchard JL. 2020. Fish body sizes change with temperature but not all species shrink with warming. Nat Ecol Evol. 4:809-814. https://doi.org/10.1038/s41559-020-1171-0 DOI: https://doi.org/10.1038/s41559-020-1171-0

Badan-Dangon A. 1998. Coastal circulation from the Galápagos to the Gulf of California. In: Robinson AR, Brink, KH (eds.), The Sea, The Global Coastal Ocean Regional Studies and Syntheses, vol. 11. Cambridge (MA): John Wiley and Sons. p. 315-334.

Ballance LT, Pitman RL, Fiedler PC. 2006. Oceanographic influences on seabirds and cetaceans of the eastern tropical Pacific: A review. Prog Oceanogr. 69(2–4):360-390. https://doi.org/10.1016/j.pocean.2006.03.013 DOI: https://doi.org/10.1016/j.pocean.2006.03.013

Brander K. 2010. Impacts of climate change on fisheries. J Mar Syst. 79(3–4):389-402. https://doi.org/10.1016/j.jmarsys.2008.12.015 DOI: https://doi.org/10.1016/j.jmarsys.2008.12.015

Brodeur RD, Pearcy WG, Ralston S. 2003. Abundance and distribution patterns of nekton and micronekton in the Northern California Current transition zone. J Oceanogr. 59:515-535. https://doi.org/10.1023/A:1025548801541 DOI: https://doi.org/10.1023/A:1025548801541

Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S, Bruckner A, Chiriboga A, Cortés J, Delbeek JC, DeVantier L, et al. 2008. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science. 321(5888):560-563. https://doi.org/10.1126/science.1159196 DOI: https://doi.org/10.1126/science.1159196

Cepeda-Morales J, Beier E, Gaxiola-Castro G, Lavín MF, Godínez VM. 2009. Effect of the oxygen minimum zone on the second chlorophyll maximum in the Eastern Tropical Pacific off Mexico = Efecto de la zona del mínimo de oxígeno en el segundo máximo de clorofila en el Pacífico Oriental Tropical Mexicano. Cienc Mar. 35(4):389-403. https://doi.org/10.7773/cm.v35i4.1622 DOI: https://doi.org/10.7773/cm.v35i4.1622

Cepeda-Morales J, Gaxiola-Castro G, Beier E, Godínez VM. 2013. The mechanisms involved in defining the northern boundary of the shallow oxygen minimum zone in the eastern tropical Pacific Ocean off Mexico. Deep Sea Res Part I. 76:1-12. https://doi.org/10.1016/j.dsr.2013.02.004 DOI: https://doi.org/10.1016/j.dsr.2013.02.004

Cepeda-Morales J, Hernández-Vásquez F, Rivera-Caicedo J, Romero-Bañuelos C, Inda-Díaz E, Hernández-Almeida O. 2017. Seasonal variability of satellite derived chlorophyll and sea surface temperatura on the continental shelf of Nayarit, Mexico = Variabilidad estacional de clorofila y temperatura superficial del mar satelital en la plataforma continental de Nayarit, México. BioCien. 4(6):1-17. https://doi.org/10.15741/revbio.04.06.07 DOI: https://doi.org/10.15741/revbio.04.06.07

Collins CA, Garfield N, Mascarenhas ASJ, Spearman MG, Rago TA. 1997. Ocean current across the entrance to the Gulf of California. J Geophys Res. 102(C9):20927-20936. https://doi.org/10.1029/97JC01302 DOI: https://doi.org/10.1029/97JC01302

Cortés-Lara M, Cortés-Altamirano R, Cupul-Magaña AL, Rodríguez-Nava LV, Vega-Villasante F. 2012. Guía de Florecimientos Microalgales (2000–2011) Causantes de Mareas Rojas en la Bahía de Banderas Jalisco-Nayarit. Guadalajara (Mexico): Universidad de Guadalajara. 104 p.

Di Lorenzo E, Cobb KM, Furtado JC, Schneider N, Anderson BT, Bracco A, Alexander MA, Vimont DJ. 2010. Central Pacific El Niño and decadal climate change in the North Pacific Ocean. Nat Geosci. 3:762-765. https://doi.org/10.1038/ngeo984 DOI: https://doi.org/10.1038/ngeo984

Donelson JM, Munday PL, McCormick MI, Pankhurst NW, Pankhurst PM. 2010. Effects of elevated water temperature and food availability on the reproductive performance of a coral reef fish. Mar Ecol Prog Ser. 401:233-243. https://doi.org/10.3354/meps08366 DOI: https://doi.org/10.3354/meps08366

Espinosa-Carreón LE, Valdez-Holguín JE. 2007. Variabilidad inter-anual de clorofila en el golfo de California = Gulf of California interannual chlorophyll variability. Ecol Appl. 6:83-92. DOI: https://doi.org/10.21704/rea.v6i1-2.344

Escalante F, Valdez-Holguín JE, Álvarez-Borrego S, Lara-Lara JR. 2013. Temporal and spatial variation of sea surface temperature, chlorophyll a, and primary productivity in the Gulf of California = Variación temporal y espacial de temperatura superficial del mar, clorofila a y productividad primaria en el golfo de California. Cienc Mar. 39(2):203-215. https://doi.org/10.7773/cm.v39i2.2233 DOI: https://doi.org/10.7773/cm.v39i2.2233

Fiedler PC, Talley LD. 2006. Hydrography of the eastern tropical Pacific: A review. Prog Oceanogr. 69(2–4):143-180. https://doi.org/10.1016/j.pocean.2006.03.008 DOI: https://doi.org/10.1016/j.pocean.2006.03.008

Filonov AE, Tereshchenko IE, Monzón CO, González-Ruelas ME, Godínez-Domínguez E. 2000. Variabilidad estacional de los campos de temperatura y salinidad de la zona costera de los estados de Jalisco y Colima, México = Seasonal variability of the temperature and salinity fields in the coastal zone of the states of Jalisco and Colima, Mexico. Cienc Mar. 26(2):303-321. http://doi.org/10.7773/cm.v26i2.577 DOI: https://doi.org/10.7773/cm.v26i2.577

Gafar NA, Eyre BD, Schulz KG. 2019. Particulate inorganic to organic carbon production as a predictor for coccolithophorid sensitivity to ongoing ocean acidification. Limnol Ocean Lett. 4(3):62-70. https://doi.org/10.1002/lol2.10105 DOI: https://doi.org/10.1002/lol2.10105

García-Oliva F, Camou A, Maass M. 2002. El clima de la región central de la costa del Pacífico mexicano. In: Noguera FA, Vega JH, García-Aldrete AN, Quesada M (eds.), Historia Natural del Bosque Caducifolio de Chamela. Mexico: Instituto de Biología de la UNAM. p. 3-10.

García-Oliva F, Ezcurra E, Galicia L. 1991. Pattern of rainfall distribution in the central Pacific coast of Mexico. Geogr Ann Ser A. 73(3–4):179-186. https://doi.org/10.1080/04353676.1991.11880343 DOI: https://doi.org/10.1080/04353676.1991.11880343

[IPCC] Intergovernmental Panel on Climate Change. 2002. Climate change and biodiversity, Technical Paper V. [place unknown]: IPCC. 86 p; accessed 2020 Jul 17. https://wedocs.unep.org/20.500.11822/32705.

Green BS, Fisher R. 2004. Temperature influences swimming speed, growth and larval duration in coral reef fish larvae. J Exp Mar Biol Ecol. 299:115-132. https://doi.org/10.1016/j.jembe.2003.09.001 DOI: https://doi.org/10.1016/j.jembe.2003.09.001

Harley CDG, Randall Hughes A, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL. 2006. The impacts of climate change in coastal marine systems. Ecol Lett. 9(2):228-241.

https://doi.org/10.1111/j.1461-0248.2005.00871.x DOI: https://doi.org/10.1111/j.1461-0248.2005.00871.x

Hopkins J, Henson SA, Poulton AJ, Balch WM. 2019. Regional characteristics of the temporal variability in the global particulate inorganic carbon inventory. Glob Biogeo Cycles. 33(11):1328-1338.

https://doi.org/10.1029/2019GB006300 DOI: https://doi.org/10.1029/2019GB006300

Kumar A, Hoerling MP. 2003. The nature and causes for the delayed atmospheric response to El Niño. J Clim. 16(9):1391-1403. https://doi.org/10.1175/1520-0442-16.9.1391 DOI: https://doi.org/10.1175/1520-0442-16.9.1391

Lavín MF, Beier E, Gómez-Valdés J, Godínez VM, García J. 2006. On the summer poleward coastal current off SW México. Geophys Res Lett. 33(2):2-5. https://doi.org/10.1029/2005GL024686 DOI: https://doi.org/10.1029/2005GL024686

Lavín MF, Marinone SG. 2003. An overview of the physical oceanography of the Gulf of California. In: Velasco Fuentes OU, Sheinbaum J, Ochoa J (eds.), Nonlinear Processes in Geophysical Fluid Dynamics. Dordrecht (Netherlands): Springer. 378 p. https://doi.org/10.1007/978-94-010-0074-1_11 DOI: https://doi.org/10.1007/978-94-010-0074-1_11

Ledesma-Vázquez J, Johnson ME, González- Yajimovich O, Santamaría-del-Angel E. 2009. Gulf of California Geography, Geological Origins, Oceanography, and Sedimentation Patterns. In: Johnson ME, Ledesma-Vázquez J (eds.), Atlas of Coastal Ecosystems in the Gulf of California: Tracking Limestone Deposits on The Margin of a Young Sea. Tucson (AZ): The University of Arizona Press. p. 1-10.

Lee T, McPhaden MJ. 2010. Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett. 37(14):1-5. https://doi.org/10.1029/2010GL044007 DOI: https://doi.org/10.1029/2010GL044007

López-Sandoval DC, Lara-Lara JR, Álvarez-Borrego S. 2009a. Phytoplankton production by remote sensing in the region off Cabo Corrientes, Mexico = Producción fitoplanctónica por sensores remotos en la región frente a Cabo Corrientes, México. Hidrobiol. 19:185-192.

López-Sandoval DC, Lara-Lara JR, Lavín MF, Álvarez-Borrego S, Gaxiola-Castro G. 2009b. Primary productivity in the eastern tropical Pacific off Cabo Corrientes, Mexico = Productividad primaria en el Pacífico oriental tropical adyacente a Cabo Corrientes, México. Cienc Mar. 35(2):169-182.

https://doi.org/10.7773/cm.v35i2.1530 DOI: https://doi.org/10.7773/cm.v35i2.1530

Magaña-Rueda V, Pérez JL, Conde C. 1997. El fenómeno de El Niño y la Oscilación del Sur y sus impactos en México. Ciencias. 51:14-18.

Maul GA, Williams F, Roffer M, Sousa FM. 1984. Remotely sensed oceanographic patterns and variability of bluefin tuna catch in the Gulf of Mexico. Oceanol Acta. 7(4):469-479.

McPhaden MJ, Zhang D. 2002. Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature. 415:603-608. https://doi.org/10.1038/415603a DOI: https://doi.org/10.1038/415603a

Mercado-Santana JA, Santamaría-del-Ángel E, González-Silvera A, Sánchez-Velasco L, Gracia-Escobar MF, Millán-Núñez R, Torres-Navarrete C. 2017. Productivity in the Gulf of California large marine ecosystem. Environ Dev. 22:18-29. https://doi.org/10.1016/j.envdev.2017.01.003 DOI: https://doi.org/10.1016/j.envdev.2017.01.003

Moncayo-Estrada R, Castro-Aguirre JL, De La-Cruz Agüero J. 2006. Lista sistemática de la ictiofauna de Bahía de Banderas. México. Rev Mex Biodivers. 77:67-80. DOI: https://doi.org/10.22201/ib.20078706e.2006.001.319

Páez-Osuna F, Sanchez-Cabeza JA, Ruiz-Fernández AC, Alonso-Rodríguez R, Piñón-Gimate A, Cardoso-Mohedano JG, Flores-Verdugo FJ, Carballo JL, Cisneros-Mata MA, Álvarez-Borrego S. 2016. Environmental status of the Gulf of California: A review of responses to climate change and climate variability. Earth-Sci Rev. 162:253-268. https://doi.org/10.1016/j.earscirev.2016.09.015 DOI: https://doi.org/10.1016/j.earscirev.2016.09.015

Palacios DM, Bograd SJ, Foley DG, Schwing FB. 2006. Oceanographic characteristics of biological hot spots in the North Pacific: A remote sensing perspective. Deep Sea Res Part II. 53(3–4):250-269. https://doi.org/10.1016/j.dsr2.2006.03.004 DOI: https://doi.org/10.1016/j.dsr2.2006.03.004

Pantoja DA, Marinone SG, Parés-Sierra A, Gómez-Valdivia F. 2012. Numerical modeling of seasonal and mesoscale hydrography and circulation in the Mexican Central Pacific = Modelación numérica de la hidrografía y circulación estacional y de mesoescala en el Pacífico central mexicano. Cienc Mar. 38(2):363-379. https://doi.org/10.7773/cm.v38i2.2007 DOI: https://doi.org/10.7773/cm.v38i2.2007

Reyes-Bonilla H. 2003. Coral reefs of the Pacific coast of México. In: Cortés J (ed.), Latin American Coral Reefs. Amsterdam (Netherlands): Elsevier Science B.V. p. 331-349. https://doi.org/10.1016/B978-044451388-5/50015-1 DOI: https://doi.org/10.1016/B978-044451388-5/50015-1

Reyes-Coca S, Troncoso-Gaytán R. 2001. “El Niño Oscilación del Sur” y los fenómenos hidrometeorológicos en Baja California: el evento de 1997-1998. INP. SAGARPA. México. Ciencia Pesquera. 15:89-96.

Ribas-Ribas M, Hernández-Ayón JM, Camacho-Ibar VF, Cabello-Pasini A, Mejia-Trejo A, Durazo R, Galindo-Bect S, Souza AJ, Forja JM, Siqueiros-Valencia A. 2011. Effects of upwelling, tides and biological processes on the inorganic carbon system of a coastal lagoon in Baja California. Estuar Coast Shelf Sci. 95(4):367-376. https://doi.org/10.1016/j.ecss.2011.09.017 DOI: https://doi.org/10.1016/j.ecss.2011.09.017

R Core Team. 2021. R: A language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing; accessed 08 December 2021. https://www.R-project.org/.

Robertson DR, Cramer KL. 2009. Shore fishes and biogeographic subdivisions of the Tropical Eastern Pacific. Mar Ecol Prog Ser. 380:1-17. https://doi.org/10.3354/meps07925 DOI: https://doi.org/10.3354/meps07925

Rodríguez-Troncoso AP, Carpizo-Ituarte E, Cupul-Magaña AL. 2016. Physiological response to high temperature in the Tropical Eastern Pacific coral Pocillopora verrucosa. Mar Ecol. 37:1168-1175. https://doi.org/10.1111/maec.12392 DOI: https://doi.org/10.1111/maec.12392

Simons RA, Mendelssohn R. 2012. ERDDAP-A Brokering Data Server for Gridded and Tabular Datasets. In: [AGU] American Geophysical Union (ed.), Fall Meeting Abstracts Vol. 2012. San Francisco (CA): American Geophysical Union. p. IN21B-1473; accessed 2018 May. https://coastwatch.pfeg.noaa.gov/erddap/index.

Sosa-Ávalos R, Espinosa-Carreón TL, Santamaría-del-Ángel E, Cepeda-Morales J, Mercado-Santana A, De la Cruz-Orozco ME, Lara-Lara JR, Álvarez-Borrego S, Gaxiola-Castro G. 2017. Diagnóstico y análisis de la producción primaria neta en los mares de México. Elem Pol Púb. 2(3):164-185.

Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie SA, et al. 2007. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience. 57(7):573-583. https://doi.org/10.1641/B570707 DOI: https://doi.org/10.1641/B570707

Speers AE, Besedin EY, Palardy JE, Moore C. 2016. Impacts of climate change and ocean acidification on coral reef fisheries: An integrated ecological-economic model. Ecol Econ. 128:33-43. https://doi.org/10.1016/j.ecolecon.2016.04.012 DOI: https://doi.org/10.1016/j.ecolecon.2016.04.012

Wild C, Hoegh-Guldberg O, Naumann MS, Colombo-Pallotta MF, Ateweberhan M, Fitt WK, Iglesias-Prieto R, Palmer C, Bythell JC, Ortiz J, et al. 2011. Climate change impedes reef ecosystem engineers. Mar Freshw Res. 62(2):205-215. https://doi.org/10.1071/MF10254 DOI: https://doi.org/10.1071/MF10254

Wolter K, Timlin MS. 2011. El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index. Int J Climatol. 31(7):1074-1087. https://doi.org/10.1002/joc.2336 DOI: https://doi.org/10.1002/joc.2336

Zamudio L, Leonardi AP, Meyers SD, O’Brien JJ. 2001. ENSO and eddies on the southwest coast of Mexico. Geophys Res Lett. 28(1):13-16. https://doi.org/10.1029/2000GL011814 DOI: https://doi.org/10.1029/2000GL011814

Zeitzschel B. 1969. Primary productivity in the Gulf of California. Mar Biol. 3:201-207. https://doi.org/10.1007/BF00360952 DOI: https://doi.org/10.1007/BF00360952

Artículos más leídos del mismo autor/a